OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 50, Iss. 33 — Nov. 20, 2011
  • pp: 6248–6253

Near-infrared distributed feedback solgel lasers by intensity modulation and polarization modulation

Jun Wang, Hongxing Dong, Jintai Fan, Rihong Li, Long Zhang, and King Y. Wong  »View Author Affiliations


Applied Optics, Vol. 50, Issue 33, pp. 6248-6253 (2011)
http://dx.doi.org/10.1364/AO.50.006248


View Full Text Article

Enhanced HTML    Acrobat PDF (720 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Near-infrared distributed feedback (DFB) laser actions of Oxazine 725 dye in zirconia thin films and in silica bulks were investigated. Intensity modulation and polarization modulation were used to generate the DFB lasing. Wideband tuning of the output wavelength was achieved by varying the period of the modulation generated by a nanosecond Nd:YAG laser at 532 nm . Tuning ranges were 716–778 nm and 724 813 nm for the thin film lasers and the bulk lasers, respectively. The laser output showed different polarization characteristics and threshold energy variation when the feedback mechanism was changed from intensity modulation to polarization modulation.

© 2011 Optical Society of America

OCIS Codes
(140.2050) Lasers and laser optics : Dye lasers
(140.3070) Lasers and laser optics : Infrared and far-infrared lasers
(140.3380) Lasers and laser optics : Laser materials
(140.3490) Lasers and laser optics : Lasers, distributed-feedback

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: August 11, 2011
Manuscript Accepted: October 10, 2011
Published: November 17, 2011

Citation
Jun Wang, Hongxing Dong, Jintai Fan, Rihong Li, Long Zhang, and King Y. Wong, "Near-infrared distributed feedback solgel lasers by intensity modulation and polarization modulation," Appl. Opt. 50, 6248-6253 (2011)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-50-33-6248


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442, 381–386 (2006). [CrossRef] [PubMed]
  2. C. V. Shank, J. E. Bjorkhol, and H. Kogelnik, “Tunable distributed-feedback dye laser,” Appl. Phys. Lett. 18, 395–396(1971). [CrossRef]
  3. J. E. Carroll, J. Whiteaway, and D. Plumb, Distributed Feedback Semiconductor Lasers (SPIE, 1998). [CrossRef]
  4. I. D. W. Samuel and G. A. Turnbull, “Organic semiconductor lasers,” Chem. Rev. 107, 1272–1295 (2007). [CrossRef] [PubMed]
  5. P. Del Carro, A. Camposeo, R. Stabile, E. Mele, L. Persano, R. Cingolani, and D. Pisignano, “Near-infrared imprinted distributed feedback lasers,” Appl. Phys. Lett. 89, 201105(2006). [CrossRef]
  6. Y. Oki, S. Miyamoto, M. Maeda, and N. J. Vasa, “Multiwavelength distributed-feedback dye laser array and its application to spectroscopy,” Opt. Lett. 27, 1220–1222 (2002). [CrossRef]
  7. S. Prezioso, L. Ottaviano, F. Bisti, M. Donarelli, S. Santucci, L. Palladino, S. Penna, and A. Reale, “Infrared photoluminescence of erbium-tris (8-hydroxyquinoline) in a distributed feedback cavity,” J. Lumin. 131, 682–685 (2011). [CrossRef]
  8. L. T. Shi, F. Jin, M. L. Zheng, X. Z. Dong, W. Q. Chen, Z. S. Zhao, and X. M. Duan, “Threshold optimization of polymeric opal photonic crystal cavity as organic solid-state dye-doped laser,” Appl. Phys. Lett. 98, 093304 (2011). [CrossRef]
  9. G. A. Turnbull, T. F. Krauss, W. L. Barnes, and I. D. W. Samuel, “Tuneable distributed feedback lasing in MEH-PPV films,” Synth. Met. 121, 1757–1758 (2001). [CrossRef]
  10. Y. Yang, G. A. Turnbull, and I. D. W. Samuel, “Hybrid optoelectronics: a polymer laser pumped by a nitride light-emitting diode,” Appl. Phys. Lett. 92, 163306 (2008). [CrossRef]
  11. R. Ozaki, T. Shinpo, K. Yoshino, M. Ozaki, and H. Moritake, “Tunable liquid crystal laser using distributed feedback cavity fabricated by nanoimprint lithography,” Appl. Phys. Express 1, 012003 (2008). [CrossRef]
  12. S. Klinkhammer, N. Heussner, K. Huska, T. Bocksrocker, F. Geislhöringer, C. Vannahme, T. Mappes, and U. Lemmer, “Voltage-controlled tuning of an organic semiconductor distributed feedback laser using liquid crystals,” Appl. Phys. Lett. 99, 023307 (2011). [CrossRef]
  13. X. L. Zhu and D. Lo, “Sol-gel glass distributed feedback waveguide laser,” Appl. Phys. Lett. 80, 917–919 (2002). [CrossRef]
  14. F. Chen, J. Wang, C. Ye, W. H. Ni, J. L. Chan, Y. Yang, and D. Lo, “Near infrared distributed feedback lasers based on LDS dye-doped zirconia-organically modified silicate channel waveguides,” Opt. Express 13, 1643–1650 (2005). [CrossRef] [PubMed]
  15. H. Kogelnik and C. V. Shank, “Coupled-wave theory of distributed feedback lasers,” J. Appl. Phys. 43, 2327–2335(1972). [CrossRef]
  16. T. Kobayashi and R. Hogan, “Near-infrared polymer semiconductor laser,” Appl. Phys. Lett. 97, 143303 (2010). [CrossRef]
  17. T. Kobayashi, J. B. Savatier, G. Jordan, W. J. Blau, Y. Suzuki, and T. Kaino, “Near-infrared laser emission from luminescent plastic waveguides,” Appl. Phys. Lett. 85, 185–187(2004). [CrossRef]
  18. X. L. Zhu, S. K. Lam, and D. Lo, “Distributed-feedback dye-doped solgel silica lasers,” Appl. Opt. 39, 3104–3107(2000). [CrossRef]
  19. C. Ye, J. Wang, L. Shi, and D. Lo, “Polarization and threshold energy variation of distributed feedback lasing of oxazine dye in zirconia waveguides and in solutions,” Appl. Phys. B 78, 189–194 (2004). [CrossRef]
  20. D. Lo, C. Ye, and J. Wang, “Distributed feedback laser action by polarization modulation,” Appl. Phys. B 76, 649–653(2003). [CrossRef]
  21. Y. Sorek, M. Zevin, R. Reisfeld, T. Hurvits, and S. Ruschin, “Zirconia and zirconia-ORMOSIL planar waveguides prepared at room temperature,” Chem. Mater. 9, 670–676(1997). [CrossRef]
  22. D. Lo, L. Shi, J. Wang, G. X. Zhang, and X. L. Zhu, “Zirconia and zirconia-organically modified silicate distributed feedback waveguide lasers tunable in the visible,” Appl. Phys. Lett. 81, 2707–2709 (2002). [CrossRef]
  23. J. Wang, “Experimental and theoretical studies of distributed feedback waveguide lasers,” Ph.D. dissertation (The Chinese University of Hong Kong, 2006).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited