OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 50, Iss. 33 — Nov. 20, 2011
  • pp: 6254–6260

Ultrasensitive thermal sensors based on whispering gallery modes in a polymer core optical ring resonator

Nai Lin, Lan Jiang, Sumei Wang, Hai Xiao, Yongfeng Lu, and Hailung Tsai  »View Author Affiliations

Applied Optics, Vol. 50, Issue 33, pp. 6254-6260 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (619 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



This study proposes a thermal sensor based on whispering gallery modes (WGMs) in a polymer core optical ring resonator (PCORR). The thermal sensitivity and detection limit (i.e., the temperature resolution) for WGMs of various orders and polarizations are theoretically studied as a function of the ring wall thickness. The results show that the temperature detection limits can be as low as 4 × 10 5 and 6 × 10 6 K for laser linewidths of 2 and 0.3 MHz , respectively. The ultrahigh temperature resolution makes the PCORR a very promising platform for temperature measurement. The analysis also shows that the WGM of a lower order has better thermal sensing performance and a thinner optimal thickness of the ring resonator.

© 2011 Optical Society of America

OCIS Codes
(140.4780) Lasers and laser optics : Optical resonators
(160.5470) Materials : Polymers
(230.5750) Optical devices : Resonators
(280.4788) Remote sensing and sensors : Optical sensing and sensors

ToC Category:
Lasers and Laser Optics

Original Manuscript: May 31, 2011
Revised Manuscript: July 25, 2011
Manuscript Accepted: August 26, 2011
Published: November 17, 2011

Nai Lin, Lan Jiang, Sumei Wang, Hai Xiao, Yongfeng Lu, and Hailung Tsai, "Ultrasensitive thermal sensors based on whispering gallery modes in a polymer core optical ring resonator," Appl. Opt. 50, 6254-6260 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. V. Sandoghdar, F. Treussart, J. Hare, V. Lefevre-Seguin, J. M. Raimond, and S. Haroche, “Very low threshold whispering gallery mode microsphere laser,” Phys. Rev. A 54, R1777–R1780 (1996). [CrossRef] [PubMed]
  2. Y. F. Xiao, C. L. Zou, P. Xue, L. X. Xiao, Y. Li, C. H. Dong, Z. F. Han, and Q. H. Gong, “Quantum electrodynamics in a whispering-gallery microcavity coated with a polymer nanolayer,” Phys. Rev. A 81, 053807 (2010). [CrossRef]
  3. S. Schiller and R. L. Byer, “High-resolution spectroscopy of whispering gallery modes in large dielectric spheres,” Opt. Lett. 16, 1138–1140 (1991). [CrossRef] [PubMed]
  4. F. Vollmer and S. Arnord, “Whispering-gallery-mode biosensing: label-free detection down to single molecules,” Nat. Methods 5, 591–596 (2008). [CrossRef] [PubMed]
  5. N. M. Hanumegowda, C. J. Stica, B. C. Patel, I. M. White, and X. Fan, “Refractometric sensors based on microsphere resonators,” Appl. Phys. Lett. 87, 201107 (2005). [CrossRef]
  6. N. Lin, L. Jiang, S. M. Wang, L. Yuan, H. Xiao, Y. F. Lu, and H. L. Tsai, “Ultrasensitive chemical sensors based on whispering gallery modes in a microsphere coated with zeolite,” Appl. Opt. 49, 6463–6471 (2010). [CrossRef] [PubMed]
  7. N. Lin, L. Jiang, S. M. Wang, H. Xiao, Y. F. Lu, and H. L. Tsai, “Thermostable refractive index sensors based on whispering gallery modes in a microsphere coated with poly(methyl methacrylate),” Appl. Opt. 50, 992–998 (2011). [CrossRef] [PubMed]
  8. M. Han and A. Wang, “Temperature compensation of optical microresonators using a surface layer with negative thermo-optic coefficient,” Opt. Lett. 32, 1800–1802 (2007). [CrossRef] [PubMed]
  9. L. He, Y. F. Xiao, C. Dong, J. Zhu, V. Gaddam, and L. Yang, “Compensation of thermal refraction effect in high-Q toroidal microresonator by polydimethylsiloxane coating,” Appl. Phys. Lett. 93, 201102 (2008). [CrossRef]
  10. Q. L. Ma, T. Rossmann, and Z. X. Guo, “Temperature sensitivity of silica micro-resonators,” J. Phys. D 41, 245111 (2008). [CrossRef]
  11. Q. L. Ma, T. Rossmann, and Z. X. Guo, “Whispering-gallery mode silica microresonators for cryogenic to room temperature measurement,” Meas. Sci. Technol. 21, 025310 (2010). [CrossRef]
  12. M. L. Corodetsky, A. A. Savchenkov, and V. S. Ilchenko, “Ultimate Q of optical microsphere resonators,” Opt. Lett. 21, 453–455 (1996). [CrossRef]
  13. B. B. Li, Q. Y. Wang, Y. F. Xiao, X. F. Jiang, Y. Li, L. X. Xiao, and Q. H. Gong, “On chip, high-sensitivity thermal sensor based on high-Q polydimethylsiloxane-coated microresonator,” Appl. Phys. Lett. 96, 251109 (2010). [CrossRef]
  14. C. H. Dong, L. He, Y. F. Xiao, V. R. Gaddam, S. K. Ozdemir, Z. F. Han, G. C. Guo, and L. Yang, “Fabrication of high-Q polydimethylsiloxane optical microspheres for thermal sensing,” Appl. Phys. Lett. 94, 231119 (2009). [CrossRef]
  15. J. R. Schwesyg, T. Beckmann, A. S. Zimmermann, K. Buse, and D. Haertle, “Fabrication and characterization of whispering gallery mode resonators made of polymer,” Opt. Express 17, 2573–2578 (2009). [CrossRef] [PubMed]
  16. J. D. Suter, I. M. White, H. Zhu, and X. Fan, “Thermal characterization of liquid core optical ring resonator sensors,” Appl. Opt. 46, 389–396 (2007). [CrossRef] [PubMed]
  17. Y. Sun and X. Fan, “Analysis of ring resonators for chemical vapor sensor development,” Opt. Express 16, 10254–10267(2008). [CrossRef] [PubMed]
  18. Y. Sun, S. I. Shopova, G. F. Mason, and X. Fan, “Rapid chemical-vapor sensing using optofluidic ring resonators,” Opt. Lett. 33, 788–790 (2008). [CrossRef] [PubMed]
  19. C. H. Dong, F. W. Sun, C. L. Zou, X. F. Ren, G. C. Guo, and Z. F. Han, “High-Q silica microsphere by poly(methyl methacrylate) coating and modifying,” Appl. Phys. Lett. 96, 061106(2010). [CrossRef]
  20. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1998). [CrossRef]
  21. T. Ling and L. J. Guo, “A unique resonance mode observed in a prism-coupled micro-tube resonator sensor with superior index sensitivity,” Opt. Express 15, 17424–17432 (2007). [CrossRef] [PubMed]
  22. T. Ling and L. J. Guo, “Analysis of the sensing properties of silica microtube resonator sensors,” J. Opt. Soc. Am. B 26, 471–477 (2009). [CrossRef]
  23. X. D. Fan, I. M. White, H. Y. Zhou, J. D. Suter, and H. Oveys, “Overview of novel integrated optical ring resonator bio/chemical sensors,” Proc. SPIE 6452, 64520M (2007). [CrossRef]
  24. B. Ozel, R. Nett, T. Weigel, G. Schweiger, and A. Ostendorf, “Temperature sensing by using whispering gallery modes with hollow core fibers,” Meas. Sci. Technol. 21, 094015(2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited