OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 50, Iss. 34 — Dec. 1, 2011
  • pp: 6352–6357

All-optical isolator under arbitrary linearly polarized fundamental wave in an optical superlattice

Liang Yuan, Jianhong Shi, and Xianfeng Chen  »View Author Affiliations

Applied Optics, Vol. 50, Issue 34, pp. 6352-6357 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (748 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We theoretically investigate an all-optical isolator under arbitrary linearly polarized fundamental wave (FW) input in an optical superlattice (OSL). The scheme is based on simultaneously phase matching the first-order Type I (oo-e) quasi-phase-matching (QPM) second-harmonic generation (SHG) process and higher-order Type 0 (ee-e) QPM SHG process in an OSL with a defect inserted in an asymmetrical position. Simulation results show that the contrast ratio of the all-optical isolator can maintain close to 1 under arbitrary linearly polarized FW. Thus, an all-optical isolator based on an OSL that is not sensitive to the direction of linear polarization can be realized. We also show that, with the defect in a strong asymmetry position, the length of the defect can be designed flexibly to maintain a high contrast ratio. Additionally, if the length of the OSL is longer, the nonreciprocal response can be realized for low optical intensities.

© 2011 Optical Society of America

OCIS Codes
(160.4330) Materials : Nonlinear optical materials
(190.2620) Nonlinear optics : Harmonic generation and mixing

ToC Category:
Nonlinear Optics

Original Manuscript: July 21, 2011
Revised Manuscript: September 2, 2011
Manuscript Accepted: September 14, 2011
Published: November 23, 2011

Liang Yuan, Jianhong Shi, and Xianfeng Chen, "All-optical isolator under arbitrary linearly polarized fundamental wave in an optical superlattice," Appl. Opt. 50, 6352-6357 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. Fujita, M. Levy, R. M. Osgood, L. Wilkens, and H. Dotsch,“Waveguide optical isolator based on Mach–Zehnder interferometer,” Appl. Phys. Lett. 76, 2158–2160 (2000). [CrossRef]
  2. J. S. Yang, J. W. Roh, S. H. Ok, D. H. Woo, Y. T. Byun, W. Y. Lee, T. Mizumoto, and S. Lee, “An integrated optical waveguide isolator based on multimode interference by wafer direct bonding,” IEEE Trans. Magn. 41, 3520–3522 (2005). [CrossRef]
  3. T. Amemiya, H. Shimizu, M. Yokoyama, P. N. Hai, M. Tanaka, and Y. Nakano, “1.54 μm TM-mode waveguide optical isolator based on the nonreciprocal-loss phenomenon: device design to reduce insertion loss,” Appl. Opt. 46, 5784–5791 (2007). [CrossRef] [PubMed]
  4. E. Plum, V. A. Fedotov, and N. I. Zheludev, “Planar metamaterial with transmission and reflection that depend on the direction of incidence,” Appl. Phys. Lett. 94, 131901 (2009). [CrossRef]
  5. M. W. Feise, I. V. Shadrivov, and Yu. S. Kivshar, “Bistable isolator action in left-handed periodic structures,” Phys. Rev. E 71, 037602 (2005). [CrossRef]
  6. Z. F. Yu and S. H. Fan, “Complete optical isolation created by indirect interband photonic transitions,” Nat. Photon. 3, 91–94 (2009). [CrossRef]
  7. K. Gallo and G. Assanto, “All-optical isolator based on second-harmonic generation in an asymmetric waveguide,” J. Opt. Soc. Am. B 16, 267–269 (1999). [CrossRef]
  8. K. Gallo, G. Assanto, K. R. Parameswaran, and M. M. Fejer, “All-optical isolator in a periodically poled lithium niobate waveguide,” Appl. Phys. Lett. 79, 314–316 (2001). [CrossRef]
  9. Q. Wang, F. Xu, Z.-Y. Yu, X.-S. Qian, X.-K. Hu, Y.-Q. Lu, and H.-T. Wang, “A bidirectional tunable optical isolator based on periodically poled LiNbO3,” Opt. Express 18, 7340–7346(2010). [CrossRef] [PubMed]
  10. X.-S. Qian, H. Wu, Q. Wang, Z.-Y. Yu, F. Xu, Y.-Q. Lu, and Y.-F. Chen, “Electro-optic tunable optical isolator in periodically poled LiNbO3,” J. Appl. Phys. 109, 053111 (2011). [CrossRef]
  11. Z.-Y. Yu, F. Xu, X.-W. Lin, X.-S. Song, X.-S., Qian, Q. Wang, and Y.-Q. Lu, “Tunable broadband isolator based on electro-optically induced linear gratings in a nonlinear photonic crystal,” Opt. Lett. 35, 3327–3329 (2010). [CrossRef] [PubMed]
  12. B. Johnston, P. Dekker, M. Withford, S. Saltiel, and Y. Kivshar, “Simultaneous phase matching and internal interference of two second-order nonlinear parametric processes,” Opt. Express 14, 11756–11765 (2006). [CrossRef] [PubMed]
  13. R. Lifshitz, A. Arie, and A. Bahabad, “Photonic quasicrystals for nonlinear optical frequency conversion,” Phys. Rev. Lett. 95, 133901 (2005). [CrossRef] [PubMed]
  14. Z. Liu, Y. Du, J. Liao, S. Zhu, Y. Zhu, Y. Qin, H. Wang, J. He, C. Zhang, and N. Ming, “Engineering of a dual-periodic optical superlattice used in a coupled optical parametric interaction,” J. Opt. Soc. Am. B 19, 1676–1684 (2002). [CrossRef]
  15. S. Zhu, Y. Zhu, and N. Ming, “Quasi-phase-matched third-harmonic generation in a quasi-periodic optical superlattice,” Science 278, 843–846 (1997). [CrossRef]
  16. K. Fradkin-Kashi, A. Arie, P. Urenski, and G. Rosenman, “Multiple nonlinear optical interactions with arbitrary wave vector differences,” Phys. Rev. Lett. 88, 023903 (2001). [CrossRef]
  17. G. K. Samanta, S. Chaitanya Kumar, M. Mathew, C. Canalias, V. Pasiskevicius, F. Laurell, and M. Ebrahim-Zadeh, “High-power, continuous-wave, second-harmonic generation at 532 nm in periodically poled KTiOPO4,” Opt. Lett. 33, 2955–2957 (2008). [CrossRef] [PubMed]
  18. S. C. Kumar, G. K. Samanta, and M. Ebrahim-Zadeh, “High-power, single-frequency, continuous-wave second-harmonic-generation of ytterbium fiber laser in PPKTP and MgO:sPPLT,” Opt. Express 17, 13711–13726 (2009). [CrossRef] [PubMed]
  19. N. E. Yu, J. H. Ro, M. Cha, S. Kurimura, and T. Taira, “Broadband quasi-phase-matched second-harmonic generation in MgO-doped periodically poled LiNbO3 at the communications band,” Opt. Lett. 27, 1046–1048 (2002). [CrossRef]
  20. J. Zhang, Y. Chen, F. Lu, and X. Chen, “Flexible wavelength conversion via cascaded second order nonlinearity using broadband SHG in MgO-doped PPLN,” Opt. Express 16, 6957–6962 (2008). [CrossRef] [PubMed]
  21. G. J. Edwards and M. Lawrence, “A temperature-dependent dispersion equation for congruently grown lithium niobate,” Opt. Quantum Electron. 16, 373–375 (1984). [CrossRef]
  22. I. Brener, M. H. Chou, D. Peale, and M. M. Fejer, “Cascaded χ(2) wavelength converter in LiNbO3 waveguides with counterpropagating beams,” Electron. Lett. 35, 1155–1157 (1999). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited