OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 50, Iss. 34 — Dec. 1, 2011
  • pp: 6358–6368

Absorption and backscattering coefficients and their relations to water constituents of Poyang Lake, China

Guofeng Wu, Lijuan Cui, Hongtao Duan, Teng Fei, and Yaolin Liu  »View Author Affiliations


Applied Optics, Vol. 50, Issue 34, pp. 6358-6368 (2011)
http://dx.doi.org/10.1364/AO.50.006358


View Full Text Article

Enhanced HTML    Acrobat PDF (739 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The measurement and analysis of inherent optical properties (IOPs) of the main water constituents are necessary for remote-sensing-based water quality estimation and other ecological studies of lakes. This study aimed to measure and analyze the absorption and backscattering coefficients of the main water constituents and, further, to analyze their relations to the water constituent concentrations in Poyang Lake, China. The concentrations and the absorption and backscattering coefficients of the main water constituents at 47 sampling sites were measured and analyzed as follows. (1) The concentrations of chlorophyll a ( C CHL ), dissolved organic carbon ( C DOC ), suspended particulate matter ( C SPM ), including suspended particulate inorganic matter ( C SPIM ) and suspended particulate organic matter ( C SPOM ), and the absorption coefficients of total particulate ( a p ), phytoplankton ( a ph ), nonpigment particulate ( a d ), and colored/chromophoric dissolved organic matter ( a g ) were measured in the laboratory. (2) The total backscattering coefficients, including the contribution of pure water at six wavelengths of 420, 442, 470, 510, 590, and 700 nm , were measured in the field with a HydroScat-6 backscattering sensor. (3) The backscattering coefficients without the contribution of pure water ( b b ) were then derived by subtracting the backscattering coefficients of pure water from the total backscattering coefficients. (4) The C CHL , C SPM , C SPIM , C SPOM , and C DOC of the 41 remaining water samples were statistically described and their correlations were analyzed. (5) The a ph , a d , a p , a g , and b b were visualized and analyzed, and their relations to C CHL , C SPM , C SPIM , C SPOM , or C DOC were studied. Results showed the following. (1) Poyang Lake was a suspended particulate inorganic matter dominant lake with low phytoplankton concentration. (2) One salient a ph absorption peak was found at 678 nm , and it explained 72% of the variation of C CHL . (3) The a d and a p exponentially decreased with increasing wavelength, and they explained 74% of the variation of C SPIM and 71% variation of C SPM , respectively, at a wavelength of 440 nm . (4) The a g also exponentially decreased with increasing wavelength, and it had no significant correlation to C DOC at a significance level of 0.05. (5) The b b decreased with increasing wavelength, and it had strong and positive correlations to C SPM , C SPIM and C SPOM , a strong and negative correlation to C CHL , and no correlation to C DOC at a significance level of 0.05. Such results will be helpful for the understanding of the IOPs of Poyang Lake. They, however, only represented the IOPs during the sampling time period, and more measurements and analyses in different seasons need to be carried out in the future to ensure a comprehensive understanding of the IOPs of Poyang Lake.

© 2011 Optical Society of America

OCIS Codes
(290.1350) Scattering : Backscattering
(300.1030) Spectroscopy : Absorption

ToC Category:
Scattering

History
Original Manuscript: June 3, 2011
Revised Manuscript: September 30, 2011
Manuscript Accepted: October 6, 2011
Published: November 25, 2011

Virtual Issues
Vol. 7, Iss. 2 Virtual Journal for Biomedical Optics

Citation
Guofeng Wu, Lijuan Cui, Hongtao Duan, Teng Fei, and Yaolin Liu, "Absorption and backscattering coefficients and their relations to water constituents of Poyang Lake, China," Appl. Opt. 50, 6358-6368 (2011)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-50-34-6358


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Reinart, B. Paavel, D. Pierson, and N. Strombeck, “Inherent and apparent optical properties of Lake Peipsi, Estonia,” Boreal Environ. Res. 9, 429–445 (2004).
  2. Z. P. Lee, K. L. Carder, and R. A. Arnone, “Deriving inherent optical properties from water color: a multiband quasi-analytical algorithm for optically deep waters,” Appl. Opt. 41, 5755–5772 (2002). [CrossRef] [PubMed]
  3. E. Leymarie, D. Doxaran, and M. Babin, “Uncertainties associated to measurements of inherent optical properties in natural waters,” Appl. Opt. 49, 5415–5436 (2010). [CrossRef] [PubMed]
  4. H. Loisel and D. Stramski, “Estimation of the inherent optical properties of natural waters from the irradiance attenuation coefficient and reflectance in the presence of Raman scattering,” Appl. Opt. 39, 3001–3011 (2000). [CrossRef]
  5. M. H. Pinkerton, G. F. Moore, S. J. Lavender, M. P. Gall, K. Oubelkheir, K. M. Richardson, P. W. Boyd, and J. Aiken, “A method for estimating inherent optical properties of New Zealand continental shelf waters from satellite ocean colour measurements,” N. Z. J. Mar. Freshwater Res. 40, 227–247(2006). [CrossRef]
  6. E. H. S. Van Duin, G. Blom, F. J. Los, R. Maffione, R. Zimmerman, C. F. Cerco, M. Dortch, and E. P. H. Best, “Modeling underwater light climate in relation to sedimentation, resuspension, water quality and autotrophic growth,” Hydrobiologia 444, 25–42 (2001). [CrossRef]
  7. W. R. Clavano, E. Boss, and L. Karp-Boss, “Inherent optical properties of non-spherical marine-like particles—From theory to observation,” Oceanogr. Mar. Biol. 45, 1–38(2007). [CrossRef]
  8. R. Ma, J. Tang, and J. Dai, “Bio-optical model with optimal parameter suitable for Taihu Lake in water colour remote sensing,” Int. J. Remote Sens. 27, 4305–4328 (2006). [CrossRef]
  9. T. Suresh, E. Desa, J. Kurian, and A. Mascarenhas, “Measurement of inherent optical properties in the Arabian Sea,” Indian J. Mar. Sci. 27, 274–280 (1998).
  10. W. S. Pegau, “Inherent optical properties of the central Arctic surface waters,” J. Geophys. Res. Oceans 107, 8035 (2002). [CrossRef]
  11. G. Riccobene, A. Capone, S. Aiello, M. Ambriola, F. Ameli, I. Amore, M. Anghinolfi, A. Anzalone, C. Avanzini, G. Barbarino, E. Barbarito, M. Battaglieri, R. Bellotti, N. Beverim, M. Bonorl, B. Bouhadef, M. Brescia, G. Cacopardo, F. Cafagna, L. Caponetto, E. Castorina, A. Ceres, T. Chiarusi, M. Circella, R. Cocimano, R. Coniglione, M. Cordelli, M. Costa, S. Cuneo, A. D’Amico, G. De Bonis, C. De Marzo, G. De Rosa, R. De Vita, C. Distefano, E. Falchini, C. Fiorello, V. Flaminio, K. Fratini, A. Gabrielli, S. Galcotti, E. Gandolfi, A. Grimaldi, R. Habel, E. Leonora, A. Lonardo, G. Longo, D. Lo Presti, F. Lucarelli, E. Maccioni, A. Margiotta, A. Martini, R. Masullo, R. Megna, E. Migneco, M. Mongelli, T. Montaruli, M. Morganti, M. Musumeci, C. A. Nicolau, A. Orlando, M. Osipenko, G. Osteria, R. Papaleo, V. Pappalardo, C. Petta, P. Piattelli, F. Raffaelli, G. Raia, N. Randazzo, S. Reito, G. Kicco, M. Ripani, A. Rovelli, M. Ruppi, G. V. Russo, S. Russo, P. Sapienza, M. Sedita, J. P. Schuller, E. Shirokov, F. Simeone, V. Sipala, M. Spurio, M. Taiuti, G. Terreni, L. Trasatti, S. Urso, V. Valente, and P. Vicini, “Deep seawater inherent optical properties in the Southern Ionian Sea,” Astropart. Phys. 27, 1–9 (2007). [CrossRef]
  12. W. Ambarwulan, M. S. Salama, C. M. Mannaerts, and W. Verhoef, “Estimating specific inherent optical properties of tropical coastal waters using bio-optical model inversion and in situ measurements: case of the Berau estuary, East Kalimantan, Indonesia,” Hydrobiologia 658, 197–211 (2011). [CrossRef]
  13. D. McKee, A. Cunningham, J. Slater, K. J. Jones, and C. R. Griffiths, “Inherent and apparent optical properties in coastal waters: a study of the Clyde Sea in early summer,” Estuarine Coastal Shelf Sci. 56, 369–376 (2003). [CrossRef]
  14. M. S. Salama, A. Dekker, Z. Su, C. M. Mannaerts, and W. Verhoef, “Deriving inherent optical properties and associated inversion-uncertainties in the Dutch Lakes,” Hydrol. Earth Syst. Sci. 13, 1113–1121 (2009). [CrossRef]
  15. P. E. Lyon, F. E. Hoge, C. W. Wright, R. N. Swift, and J. K. Yungel, “Chlorophyll biomass in the global oceans: satellite retrieval using inherent optical properties,” Appl. Opt. 43, 5886–5892 (2004). [CrossRef] [PubMed]
  16. V. Balkanov, I. Belolaptikov, L. Bezrukov, N. Budnev, A. Capone, A. Chensky, I. Danilchenko, G. Domogatsky, Z. A. Dzhilkibaev, S. Fialkovsky, O. Gaponenko, O. Gress, T. Gress, R. Il’yasov, A. Klabukov, A. Klimov, S. Klimushin, K. Konischev, A. Koshechkin, V. Kuznetzov, L. Kumichev, V. Kulepov, B. Lubsandorzhiev, R. Masullo, E. Migneco, S. Mikheyev, M. Milenin, R. Mirgazov, N. Moselko, E. Osipova, A. Panfilov, L. Pan’kov, Y. Parfenov, A. Pavlov, M. Petruccetti, E. Pliskovsky, P. Pokhil, V. Poleschuk, E. Popova, V. Prosin, G. Riccobene, M. Rozanov, V. Rubtzov, Y. Semeney, C. Spiering, O. Streicher, B. Tarashansky, R. Vasiljev, R. Wischnewski, I. Yashin, and V. Zhukov, “Simultaneous measurements of water optical properties by AC9 transmissometer and ASP-15 inherent optical properties meter in Lake Baikal,” Nucl. Instrum. Methods Phys. Res. A 498, 231–239 (2003). [CrossRef]
  17. D. Doxaran, N. Cherukuru, and S. J. Lavender, “Apparent and inherent optical properties of turbid estuarine waters: measurements, empirical quantification relationships, and modeling,” Appl. Opt. 45, 2310–2324 (2006). [CrossRef] [PubMed]
  18. G. Campbell, S. R. Phinn, and P. Daniel, “The specific inherent optical properties of three sub-tropical and tropical water reservoirs in Queensland, Australia,” Hydrobiologia 658, 233–252 (2011). [CrossRef]
  19. S.Sathyendranath, ed., “Remote sensing of ocean colour in coastal, and other optically-complex, waters,” in Reports of the International Ocean-Colour Coordinating Group (International Ocean-Colour Coordinating Group, 2000).
  20. J. T. O. Kirk, Light and Photosynthesis in Aquatic Ecosystems (Cambridge University, 1994). [CrossRef]
  21. C. E. Binding, J. H. Jerome, R. P. Bukata, and W. G. Booty, “Spectral absorption properties of dissolved and particulate matter in Lake Erie,” Remote Sens. Environ. 112, 1702–1711 (2008). [CrossRef]
  22. R. Ma, J. Tang, H. Duan, and D. Pan, “Progress in lake water color remote sensing,” J. Lake Sci. 21, 143–158 (2009) (in Chinese).
  23. H. Loisel, X. Meriaux, A. Poteau, L. F. Artigas, B. Lubac, A. Gardel, J. Cafflaud, and S. Lesourd, “Analyze of the inherent optical properties of French Guiana coastal waters for remote sensing applications,” J. Coastal Res. Special Issue 56, 1532–1536 (2009).
  24. W. Okullo, T. Ssenyonga, B. Hamre, O. Frette, K. Sorensen, J. J. Stamnes, A. Steigen, and K. Stamnes, “Parameterization of the inherent optical properties of Murchison Bay, Lake Victoria,” Appl. Opt. 46, 8553–8561 (2007). [CrossRef] [PubMed]
  25. D. Pan and R. Ma, “Several key problems of lake water quality remote sensing,” J. Lake Sci. 20, 139–144 (2008) (in Chinese).
  26. N. Strombeck and D. C. Pierson, “The effects of variability in the inherent optical properties on estimations of chlorophyll a by remote sensing in Swedish freshwaters,” Sci. Total Environ. 268, 123–137 (2001). [CrossRef] [PubMed]
  27. D. Y. Sun, Y. M. Li, Q. Wang, J. Gao, H. Lv, C. F. Le, and C. C. Huang, “Light scattering properties and their relation to the biogeochemical composition of turbid productive waters: a case study of Lake Taihu,” Appl. Opt. 48, 1979–1989(2009). [CrossRef] [PubMed]
  28. R. Ma, G. Yang, H. Duan, J. Jiang, S. Wang, X. Feng, A. Li, F. Kong, B. Xue, J. Wu, and S. Li, “China’s lakes at present: number, area and spatial distribution,” Sci. China Earth Sci. 54, 283–289 (2011). [CrossRef]
  29. H. T. Duan, R. H. Ma, Y. Z. Zhang, S. A. Loiselle, J. P. Xu, C. L. Zhao, L. Zhou, and L. L. Shang, “A new three-band algorithm for estimating chlorophyll concentrations in turbid inland lakes,” Environ. Res. Lett. 5, 044009 (2010). [CrossRef]
  30. R. Ma, J. Tang, J. Dai, Y. Zhang, and Q. Song, “Absorption and scattering properties of water body in Taihu Lake, China: absorption,” Int. J. Remote Sens. 27, 4277–4304 (2006). [CrossRef]
  31. R. H. Ma, D. L. Pan, H. T. Duan, and Q. J. Song, “Absorption and scattering properties of water body in Taihu Lake, China: backscattering,” Int. J. Remote Sens. 30, 2321–2335 (2009). [CrossRef]
  32. C. F. Le, Y. M. Li, Y. Zha, D. Y. Sun, and B. Yin, “Validation of a quasi-analytical algorithm for highly turbid eutrophic water of Meiliang Bay in Taihu Lake, China,” IEEE Trans. Geosci. Remote Sens. 47, 2492–2500 (2009). [CrossRef]
  33. Y. L. Zhang, B. Zhang, X. Wang, J. S. Li, S. Feng, Q. H. Zhao, M. L. Liu, and B. Q. Qin, “A study of absorption characteristics of chromophoric dissolved organic matter and particles in Lake Taihu, China,” Hydrobiologia 592, 105–120 (2007). [CrossRef]
  34. Q. Wang, X. Jin, Y. Li, C. Wu, H. Lü, Y. Wang, H. Zhang, B. Yin, and L. Zhu, “Estimation of suspended sediment concentration based on bio-optical mechanism and HJ-1 image in Chaohu Lake,” Sci. China Earth Sci. 53, 58–66 (2010). [CrossRef]
  35. Q. Min, “On the regularities of water level fluctuations in Poyang Lake,” J. Lake Sci. 7, 281–288 (1995) (in Chinese).
  36. D. Xu, M. Xiong, and J. Zhang, “Analysis on hydrologic characteristics of Poyang Lake,” Yangtze River 32, 21–27 (2001).
  37. D. Shankman, B. D. Keim, and J. Song, “Flood frequency in China’s Poyang Lake region: trends and teleconnections,” Int. J. Climatol. 26, 1255–1266 (2006). [CrossRef]
  38. Y. Wu and W. Ji, Study on Jiangxi Poyang Lake National Nature Reserve (Forest Publishing, 2002).
  39. G. Huang, “On ecological security and ecological construction of Poyang Lake district,” Sci. Technol. Rev. 24, 73–78 (2006) (in Chinese).
  40. L. Zhen, F. Li, H. Huang, O. Dilly, J. Liu, Y. Wei, L. Yang, and X. Cao, “Households’ willingness to reduce pollution threats in the Poyang Lake region, southern China,” J. Geochem. Explor. 110, 15–22 (2011). [CrossRef]
  41. X. Deng, Y. Zhao, F. Wu, Y. Lin, Q. Lu, and J. Dai, “Analysis of the trade-off between economic growth and the reduction of nitrogen and phosphorus emissions in the Poyang Lake Watershed, China,” Ecolog. Model. 222, 330–336 (2011). [CrossRef]
  42. Y. Zhong and S. Chen, “Impact of dredging on fish in Poyang Lake,” Jiangxi Fish. Sci. Technol. 1, 15–18 (2005) (in Chinese).
  43. G. Wu, J. De Leeuw, A. K. Skidmore, H. H. T. Prins, and Y. Liu, “Concurrent monitoring of vessels and water turbidity enhances the strength of evidence in remotely sensed dredging impact assessment,” Water Res. 41, 3271–3280 (2007). [CrossRef] [PubMed]
  44. H. T. Duan, R. H. Ma, J. P. Xu, Y. Z. Zhang, and B. Zhang, “Comparison of different semi-empirical algorithms to estimate chlorophyll-a concentration in inland lake water,” Environ. Monit. Assess. 170, 231–244 (2010). [CrossRef]
  45. M. Laanen, “Yellow matters: improving the remote sensing of coloured dissolved organic matter in inland freshwaters,” Ph.D. dissertation (VU University, Amsterdam, 2007).
  46. J. S. Cleveland and A. D. Weidemann, “Quantifying absorption by aquatic particles: a multiple scattering correction for glass-fiber filters,” Limnol. Oceanogr. 38, 1321–1327 (1993). [CrossRef]
  47. A. Bricaud, A. Morel, and L. Prieur, “Absorption by dissolved organic matter of the sea (yellow substance) in the UV and visible domains,” Limnol. Oceanogr. 26, 43–53 (1981). [CrossRef]
  48. D. J. Keith, J. A. Yoder, and S. A. Freeman, “Spatial and temporal distribution of coloured dissolved organic matter (CDOM) in Narragansett Bay, Rhode Island: implications for phytoplankton in coastal waters,” Estuarine Coastal Shelf Sci. 55, 705–717 (2002). [CrossRef]
  49. HOBI Labs Inc., “Backscattering sensor calibration manual (Revision N)” (2008).
  50. C. Le, Y. Li, Y. Zha, and D. Sun, “Specific absorption coefficient and the phytoplankton package effect in Lake Taihu, China,” Hydrobiologia 619, 27–37 (2009). [CrossRef]
  51. V. Stuart, S. Sathyendranath, T. Platt, H. Maass, and B. D. Irwin, “Pigments and species composition of natural phytoplankton populations: effect on the absorption spectra,” J. Plankton Res. 20, 187–217 (1998). [CrossRef]
  52. C. S. Roesler, M. J. Perry, and K. L. Carder, “Modeling in situ phytoplankton absorption from total absorption spectra in productive inland marine waters,” Limnol. Oceanogr. 34, 1510–1523 (1989). [CrossRef]
  53. W. Cao, Y. Yang, X. Xu, L. Huang, and J. Zhang, “Regional patterns of particulate spectral absorption in the Pearl River estuary,” Chin. Sci. Bull. 48, 2344–2351 (2003). [CrossRef]
  54. R. Ma, H. Duan, J. Tang, and Z. Chen, Remote Sensing of Lake Water Environment (Science, 2010) (in Chinese).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited