OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 50, Iss. 34 — Dec. 1, 2011
  • pp: 6369–6376

Holographic polymer-dispersed liquid crystal memory for optically reconfigurable gate array using subwavelength grating mask

Akifumi Ogiwara, Minoru Watanabe, Takayuki Mabuchi, and Fuminori Kobayashi  »View Author Affiliations


Applied Optics, Vol. 50, Issue 34, pp. 6369-6376 (2011)
http://dx.doi.org/10.1364/AO.50.006369


View Full Text Article

Enhanced HTML    Acrobat PDF (673 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Holographic polymer-dispersed liquid crystal (HPDLC) memory formed by a subwavelength grating (SWG) mask is presented for new optical information processing. The SWG structure in a photomask is formed on the SiO 2 plate using the anisotropic reactive ion etching technique. The configuration contexts for optically reconfigurable gate arrays (ORGAs) are stored in the HPDLC memory by polarization modulation property based on the form birefringence of the SWG plate. The configuration context pattern in the HPDLC memory is reconstructed to write it for the ORGAs under parallel programmability.

© 2011 Optical Society of America

OCIS Codes
(090.2900) Holography : Optical storage materials
(160.3710) Materials : Liquid crystals
(160.5470) Materials : Polymers

ToC Category:
Materials

History
Original Manuscript: September 1, 2011
Revised Manuscript: October 10, 2011
Manuscript Accepted: October 10, 2011
Published: November 25, 2011

Citation
Akifumi Ogiwara, Minoru Watanabe, Takayuki Mabuchi, and Fuminori Kobayashi, "Holographic polymer-dispersed liquid crystal memory for optically reconfigurable gate array using subwavelength grating mask," Appl. Opt. 50, 6369-6376 (2011)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-50-34-6369


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. Mumbru, G. Zhou, X. An, W. Liu, G. Panotopoulos, F. Mok, and D. Psaltis, “Optical memory for computing and information processing,” Proc. SPIE 3804, 14–24 (1999). [CrossRef]
  2. J. Mumbru, G. Zhou, S. Ay, X. An, G. Panotopoulos, F. Mok, and D. Psaltis, “Optically reconfigurable processors,” Proc. SPIE CR74, 265–288 (1999). [CrossRef]
  3. J. Mumbru, G. Panotopoulos, D. Psaltis, X. An, F. Mok, S. Ay, S. Barna, and E. Fossum, “Optically programmable gate array,” Proc. SPIE 4089, 763–771 (2000). [CrossRef]
  4. M. Watanabe and F. Kobayashi, “Dynamic optically reconfigurable gate array,” Jpn. J. Appl. Phys. 45, 3510–3515(2006). [CrossRef]
  5. N. Yamaguchi and M. Watanabe, “Liquid crystal holographic configurations for ORGAs,” Appl. Opt. 47, 4692–4700(2008). [CrossRef] [PubMed]
  6. D. Seto and M. Watanabe, “A dynamic optically reconfigurable gate array—perfect emulation,” IEEE J. Quantum Electron. 44, 493–500 (2008). [CrossRef]
  7. M. Nakajima and M. Watanabe, “Optical buffering technique under a space radiation environment,” Opt. Lett. 34, 3719–3721 (2009). [CrossRef] [PubMed]
  8. A. Ogiwara, M. Watanabe, T. Mabuchi, and F. Kobayashi, “Formation of holographic memory for defect tolerance in optically reconfigurable gate arrays,” Appl. Opt. 49, 4255–4261(2010). [CrossRef] [PubMed]
  9. R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, T. J. Bunning, and W. W. Adams, “Electrically switchable volume gratings in polymer-dispersed liquid crystals,” Appl. Phys. Lett. 64, 1074–1076 (1994). [CrossRef]
  10. T. Karasawa and Y. Taketomi, “Effects of materials system on the polarization behavior of holographic polymer dispersed liquid crystal gratings,” Jpn. J. Appl. Phys. 36, 6388–6392 (1997). [CrossRef]
  11. A. Ogiwara, Y. Kuratomi, T. Karasawa, A. Takimoto, and S. Mizuguchi, “PS polarization converting device for LC projector using holographic polymer dispersed liquid crystal films,” SID Int. Symp. Dig. Tech. Pap. 30, 1124–1127 (1999). [CrossRef]
  12. K. Kato, T. Hisaki, and M. Date, “Alignment-controlled holographic polymer dispersed liquid crystal for reflective display devices,” Jpn. J. Appl. Phys. 38, 805–808 (1999). [CrossRef]
  13. J. J. Butler and M. S. Malcuit, “Diffraction properties of highly birefringent liquid-crystal composite gratings,” Opt. Lett. 25, 420–422 (2000). [CrossRef]
  14. T. J. Bunning, L. V. Natarajan, V. P. Tondiglia, and R. L. Sutherland, “Holographic polymer-dispersed liquid crystals (H-PDLCs),” Annu. Rev. Mater. Sci. 30, 83–115 (2000). [CrossRef]
  15. C. C. Bowley and G. P. Crawford, “Diffusion kinetics of formation of holographic polymer-dispersed liquid crystal display materials,” Appl. Phys. Lett. 76, 2235–2237 (2000). [CrossRef]
  16. R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, and T. J. Bunning, “Evolution of anisotropic reflection gratings formed in holographic polymer-dispersed liquid crystals,” Appl. Phys. Lett. 79, 1420–1422 (2001). [CrossRef]
  17. J. J. Butler, M. S. Malcuit, and M. A. Rodriguez, “Diffractive properties of highly birefringent volume gratings: investigation,” J. Opt. Soc. Am. B 19, 183–189 (2002). [CrossRef]
  18. R. L. Sutherland, “Polarization and switching properties of holographic polymer-dispersed liquid-crystal gratings. I. Theoretical model,” J. Opt. Soc. Am. B 19, 2995–3003 (2002). [CrossRef]
  19. R. L. Sutherland, L. V. Natarajan, V. P. Tondiglia, S. Chandra, C. K. Shepherd, D. M. Brandelik, and S. A. Siwecki, “Polarization and switching properties of holographic polymer-dispersed liquid-crystal gratings. I. Experimental investigations,” J. Opt. Soc. Am. B 19, 3004–3012 (2002). [CrossRef]
  20. M. E. Holmes and M. S. Malcuit, “Controlling the anisotropy of holographic polymer-dispersed liquid-crystal gratings,” Phys. Rev. E 65, 066603-1 (2002). [CrossRef]
  21. Y. Lu, F. Du, and S. T. Wu, “Polarization switch using thick holographic polymer-dispersed liquid crystal grating,” J. Appl. Phys. 95, 810–815 (2004). [CrossRef]
  22. R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, and T. J. Bunning, “Phenomenological model of anisotropic volume hologram formation in liquid-crystal-photopolymer mixtures,” J. Appl. Phys. 96, 951–965 (2004). [CrossRef]
  23. A. Ogiwara, H. Kakiuchida, M. Tazawa, and H. Ono, “Analysis of anisotropic diffraction gratings using holographic polymer-dispersed liquid crystal,” Jpn. J. Appl. Phys. 46, 7341–7346(2007). [CrossRef]
  24. A. Ogiwara, M. Minato, S. Horiguchi, H. Ono, H. Imai, H. Kakiuchida, and K. Yoshimura, “Diffraction properties of anisotropic volume gratings formed in polymer-dispersed liquid crystal,” Jpn. J. Appl. Phys. 47, 6688–6694 (2008). [CrossRef]
  25. A. Ogiwara and T. Hirokari, “Formation of anisotropic diffraction gratings in a polymer-dispersed liquid crystal by polarization modulation using a spatial light modulator,” Appl. Opt. 47, 3015–3022 (2008). [CrossRef] [PubMed]
  26. A. Ogiwara, H. Kakiuchida, K. Yoshimura, M. Tazawa, A. Emoto, and H. Ono, “Effects of thermal modulation on diffraction in liquid crystal composite gratings,” Appl. Opt. 49, 4633–4640 (2010). [CrossRef] [PubMed]
  27. A. Ogiwara, “Effects of anisotropic diffractions on holographic polymer-dispersed liquid-crystal gratings,” Appl. Opt. 50, 594–603 (2011). [CrossRef] [PubMed]
  28. T. Mabuchi, M. Watanabe, A. Ogiwara, and F. Kobayashi, “Optically reconfigurable gate array with a polymer-dispersed liquid crystal holographic memory,” in 2011 NASA/ESA Conference on Adaptive Hardware and Systems (IEEE, 2011), pp. 44–49.
  29. I. Richter, P.-C. Sun, F. Xu, and Y. Fainman, “Design considerations of form birefringent microstructures,” Appl. Opt. 34, 2421–2429 (1995). [CrossRef] [PubMed]
  30. H. Kikuta, Y. Ohira, and K. Iwata, “Achromatic quarter-wave plates using the dispersion of form birefringence,” Appl. Opt. 36, 1566–1572 (1997). [CrossRef] [PubMed]
  31. G. P. Nordin and P. C. Deguzman, “Broadband form birefringent quarter-wave plate for the mid-infrared wavelength region,” Opt. Express 5, 163–168 (1999). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited