OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 50, Iss. 34 — Dec. 1, 2011
  • pp: H136–H146

Off-axis digital hologram reconstruction: some practical considerations

Nicolas Verrier and Michael Atlan  »View Author Affiliations


Applied Optics, Vol. 50, Issue 34, pp. H136-H146 (2011)
http://dx.doi.org/10.1364/AO.50.00H136


View Full Text Article

Enhanced HTML    Acrobat PDF (2431 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Holographic rendering of off-axis intensity digital holograms is discussed. A review of some of the main numerical processing methods, based either on the Fourier transform interpretation of the propagation integral or on its linear system counterpart, is reported. Less common methods such as adjustable magnification reconstruction schemes and Fresnelet decomposition are presented and applied to the digital treatment of off-axis holograms. The influence of experimental parameters on the classical hologram reconstruction methods is assessed, offering guidelines for optimal image rendering regarding the hologram recording conditions.

© 2011 Optical Society of America

OCIS Codes
(100.3010) Image processing : Image reconstruction techniques
(090.1995) Holography : Digital holography

ToC Category:
Holographic Reconstruction, Display, and Projection

History
Original Manuscript: August 1, 2011
Revised Manuscript: September 19, 2011
Manuscript Accepted: October 10, 2011
Published: November 17, 2011

Virtual Issues
Digital Holography and 3D Imaging 2011 (2011) Applied Optics

Citation
Nicolas Verrier and Michael Atlan, "Off-axis digital hologram reconstruction: some practical considerations," Appl. Opt. 50, H136-H146 (2011)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-50-34-H136


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. Gabor, “A new microscopic principle,” Nature 161, 777–778 (1948). [CrossRef] [PubMed]
  2. D. Gabor, “Microscopy by reconstructed wave-fronts,” Proc. R. Soc. Lond. A 197, 454–487 (1949). [CrossRef]
  3. E. N. Leith and J. Upatnieks, “Reconstructed wavefronts and communication theory,” J. Opt. Soc. Am. 52, 1123–1130 (1962). [CrossRef]
  4. J. W. Goodman and R. W. Lawrence, “Digital image formation from electronically detected holograms,” Appl. Phys. Lett. 11, 77–79 (1967). [CrossRef]
  5. M. A. Kronrod, N. S. Merzlyakov, and L. P. Yaroslavsky, “Reconstruction of holograms with a computer,” Sov. Phys. Tech. Phys. 17, 419–420 (1972).
  6. L. P. Yaroslvsky and N. S. Merzlyakov, Methods of Digital Holography (Springer, 1980).
  7. L. Onural and P. D. Scott, “Digital recording of in-line holograms,” Opt. Eng. 26, 1124–1132 (1987).
  8. G. Liu and P. D. Scott, “Phase retrieval and twin-image elimination for in-line Fresnel holograms,” J. Opt. Soc. Am. A 4, 159–165 (1987). [CrossRef]
  9. J. R. Fienup, “Phase retrieval algorithms, a comparison,” Appl. Opt. 21, 2758–2769 (1982). [CrossRef] [PubMed]
  10. L. Onural and M. T. Ozgen, “Extraction of three-dimensional object-location information directly from in-line holograms using Wigner analysis,” J. Opt. Soc. Am. A 9, 252–260 (1992). [CrossRef]
  11. U. Schnars and W. Jüptner, “Direct recording of holograms by a CCD target and numerical reconstruction,” Appl. Opt. 33, 179–181 (1994). [CrossRef] [PubMed]
  12. A. Lozano, J. Kostas, and J. Soria, “Use of holography in particle image velocimetry measurements of a swirling flow,” Exp. Fluids 27, 251–261 (1999). [CrossRef]
  13. H. Meng, G. Pan, Y. Pu, and S. H. Woodward, “Holographic particle image velocimetry: from film to digital recording,” Meas. Sci. Technol. 15, 673–685 (2004). [CrossRef]
  14. Y. Pu and H. Meng, “Four-dimensional dynamic flow measurement by holographic particle image velocimetry,” Appl. Opt. 44, 7697–7708 (2005). [CrossRef] [PubMed]
  15. F. Dubois, N. Callens, C. Yourassowsky, M. Hoyos, P. Kurowski, and O. Monnom, “Digital holographic microscopy with reduced spatial coherence for three-dimensional particle flow analysis,” Appl. Opt. 45, 864–871 (2006). [CrossRef] [PubMed]
  16. M. Atlan and M. Gross, “Laser Doppler imaging, revisited,” Rev. Sci. Instrum. 77, 116103 (2006). [CrossRef]
  17. J-M. Desse, P. Picart, and P. Tankam, “Digital three-color holographic interferometry for flow analysis,” Opt. Express 16, 5471–5480 (2008). [CrossRef] [PubMed]
  18. N. Verrier, S. Coëtmellec, M. Brunel, and D. Lebrun, “Digital in-line holography in thick optical systems: application to visualization in pipes,” Appl. Opt. 47, 4147–4157 (2008). [CrossRef] [PubMed]
  19. N. Verrier, S. Coëtmellec, M. Brunel, and D. Lebrun, “Determination of 3D-region of interest using digital in-line holography with astigmatic Gaussian beams,” J. Europ. Opt. Soc. Rapid Publ. 4, 09038 (2009). [CrossRef]
  20. N. Verrier, C. Remacha, M. Brunel, D. Lebrun, and S. Coëtmellec, “Micropipe flow visualization using digital in-line holographic microscopy,” Opt. Express 18, 7807–7819(2010). [CrossRef] [PubMed]
  21. S. Schedin, G. Pedrini, and H. J. Tiziani, “Pulsed digital holography for deformation measurements on biological tissues,” Appl. Opt. 39, 2853–2857 (2000). [CrossRef]
  22. M. K. Kim, “Tomographic three-dimensional imaging of a biological specimen using wavelength-scanning digital interference holography,” Opt. Express 7, 305–310 (2000). [CrossRef] [PubMed]
  23. F. Charrière, N. Pavillon, T. Colomb, C. Depeursinge, T. J. Heger, E. A. D. Mitchell, P. Marquet, and B. Rappaz, “Living specimen tomography by digital holographic microscopy: morphometry of testate amoeba,” Opt. Express 14, 7005–7013(2006). [CrossRef] [PubMed]
  24. W. Xu, M. H. Jericho, I. A. Meinertzhagen, and H. J. Kreuzer, “Digital in-line holography for biological applications,” Proc. Natl. Acad. Sci. USA 98, 11301–11305 (2001). [CrossRef] [PubMed]
  25. B. Kemper and G. von Bally, “Digital holographic microscopy for live cell applications and technical inspection,” Appl. Opt. 47, A52–A61 (2008). [CrossRef] [PubMed]
  26. M. Simonutti, M. Paques, J. A. Sahel, M. Gross, B. Samson, C. Magnain, and M. Atlan, “Holographic laser Doppler ophthalmoscopy,” Opt. Lett. 35, 1941–1943 (2010). [CrossRef] [PubMed]
  27. R. L. Powell and K. A. Stetson, “Interferometric vibration analysis by wavefront reconstruction,” J. Opt. Soc. Am. 55, 1593–1597 (1965). [CrossRef]
  28. C. C. Aleksoff, “Temporally modulated holography,” Appl. Opt. 10, 1329–1341 (1971). [CrossRef] [PubMed]
  29. F. Zhang, J. D. R. Valera, I. Yamaguchi, M. Yokota, and G. Mills, “Vibration analysis by phase shifting digital holography,” Opt. Rev. 11, 297–299 (2004). [CrossRef]
  30. U. Iemma, L. Morino, and M. Diez, “Digital holography and Karhunen-Loève decomposition for the modal analysis of two-dimensional vibrating structures,” J. Sound Vib. 291, 107–131 (2006). [CrossRef]
  31. P. Picart, J. Leval, D. Mounier, and S. Gougeon, “Some opportunities for vibration analysis with time averaging in digital Fresnel holography,” Appl. Opt. 44, 337–343 (2005). [CrossRef] [PubMed]
  32. J. Leval, P. Picart, J-P. Boileau, and J-C. Pascal, “Full-field vibrometry with digital Fresnel holography,” Appl. Opt. 44, 5763–5772 (2005). [CrossRef] [PubMed]
  33. D. Borza, “Mechanical vibration measurement by high-resolution time-averaged digital holography,” Meas. Sci. Technol. 16, 1853–1864 (2005). [CrossRef]
  34. A. Asundi and V. R. Singh, “Time-averaged in-line digital holographic interferometry for vibration analysis,” Appl. Opt. 45, 2391–2395 (2006). [CrossRef] [PubMed]
  35. F. Joud, F. Lanoë, M. Atlan, J. Hare, and M. Gross, “Imaging a vibrating object by sideband digital holography,” Opt. Express 17, 2774–2779 (2009). [CrossRef] [PubMed]
  36. I. Yamaguchi, K. Yamamoto, G. A. Mills, and M. Yokota, “Image reconstruction only by phase data in phase-shifting holography,” Appl. Opt. 45, 975–983 (2006). [CrossRef] [PubMed]
  37. K. Matsushima, “Shifted angular spectrum method for off-axis numerical propagation,” Opt. Express 18, 18453–18463(2010). [CrossRef] [PubMed]
  38. D. Lebrun, A. Benkouider, S. Coëtmellec, and M. Malek, “Particle field digital holographic reconstruction in arbitrary tilted planes,” Opt. Express 11, 224–229 (2003). [CrossRef] [PubMed]
  39. S. De Nicola, A. Finizio, G. Pierattini, P. Ferraro, and D. Alfieri, “Angular spectrum method with correction of anamorphism for numerical reconstruction on tilted planes,” Opt. Express 13, 9935–9940 (2005). [CrossRef] [PubMed]
  40. N. Verrier, S. Coëtmellec, M. Brunel, D. Lebrun, and A. J. E. M. Janssen, “Digital in-line holography with an elliptical, astigmatic, Gaussian beam: wide angle reconstruction,” J. Opt. Soc. Am. A 25, 1459–1466 (2008). [CrossRef]
  41. F. Soulez, L. Denis, C. Fournier, E. Thiébaut, and C. Goepfert, “Inverse-problem approach for particle digital holography: accurate location based on local optimization,” J. Opt. Soc. Am. A 24, 1164–1171 (2007). [CrossRef]
  42. F. Soulez, L. Denis, E. Thiébaut, C. Fournier, and C. Goepfert, “Inverse-problem approach in particle digital holography: out-of-field particle detection made possible,” J. Opt. Soc. Am. A 24, 3708–3716 (2007). [CrossRef]
  43. L. Denis, D. Lorenz, E. Thiébaut, C. Fournier, and D. Trede, “Inline hologram reconstruction with sparsity constraints,” Opt. Lett. 34, 3475–3477 (2009). [CrossRef] [PubMed]
  44. M. Marim, E. Angelini, J-C. Olivo-Marin, and M. Atlan, “Off-axis compressed holographic microscopy in low-light conditions,” Opt. Lett. 36, 79–81 (2011). [CrossRef] [PubMed]
  45. T. Shimobaba, Y. Sato, J. Miura, M. Takenouchi, and T. Ito, “Real-time digital holographic microscopy using the graphic processing unit,” Opt. Express 16, 11776–11781(2008). [CrossRef] [PubMed]
  46. L. Ahrenberg, A. J. Page, B. M. Hennelly, J. B. McDonald, and T. J. Naughton, “Using commodity graphics hardware for real-time digital hologram view-reconstruction,” IEEE J. Display Technol. 5, 111–119 (2009). [CrossRef]
  47. T. Shimobaba, N. Masuda, Y. Ichihashi, and T. Ito, “Real-time digital holographic microscopy observable in multi-view and multi-resolution,” J. Opt. 12, 065402 (2010). [CrossRef]
  48. B. Samson, F. Verpillat, M. Gross, and M. Atlan, “Video-rate wide-field laser vibrometry by heterodyne holography,” Opt. Lett. 36, 1449–1451 (2011). [CrossRef] [PubMed]
  49. I. Yamaguchi and T. Zhang, “Phase-shifting digital holography,” Opt. Lett. 22, 1268–1270 (1997). [CrossRef] [PubMed]
  50. M. Atlan, M. Gross, and E. Absil, “Accurate phase-shifting digital interferometry,” Opt. Lett. 32, 1456–1458 (2007). [CrossRef] [PubMed]
  51. J. W. Goodman, Introduction to Fourier Optics, 3rd ed.(Roberts, 2005).
  52. E. N. Leith and J. Upatnieks, “Wavefront reconstruction with continuous-tone objects,” J. Opt. Soc. Am. 53, 1377–1381 (1963). [CrossRef]
  53. E. Cuche, P. Marquet, and C. Depeursinge, “Spatial filtering for zero-order and twin-image elimination in digital off-axis holography,” Appl. Opt. 39, 4070–4075 (2000). [CrossRef]
  54. I. Yamaguchi, J. Kato, S. Ohta, and J. Mizuno, “Image formation in phase-shifting digital holography and applications to microscopy,” Appl. Opt. 40, 6177–6186 (2001). [CrossRef]
  55. M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge University, 1999).
  56. J. W. Cooley and J. W. Tukey, “An algorithm for the machine computation of complex Fourier series,” Math. Comput. 19, 297–301 (1965). [CrossRef]
  57. U. Schnars and W. Jüptner, “Digital recording and numerical reconstruction of holograms,” Meas. Sci. Technol. 13, R85–R101 (2002). [CrossRef]
  58. L. Yu and M. K. Kim, “Wavelength-scanning digital interference holography for tomographic three-dimensional imaging by use of the angular spectrum method,” Opt. Lett. 30, 2092–2094 (2005). [CrossRef] [PubMed]
  59. J. Li, P. Tankam, Z. Peng, and P. Picart, “Digital holographic reconstruction of large object using a convolution approach and adjustable magnification,” Opt. Lett. 34, 572–574 (2009). [CrossRef] [PubMed]
  60. P. Picart, P. Tankam, D. Mounier, Z-j. Peng, and J. Li, “Spatial bandwidth extended reconstruction for digital color Fresnel holograms,” Opt. Express 17, 9145–9156 (2009). [CrossRef] [PubMed]
  61. P. Ferraro, S. De Nicola, G. Coppola, A. Finizio, D. Alfieri, and G. Pierattini, “Controlling image size as a function of distance and wavelength in Fresnel-transform reconstruction of digital holograms,” Opt. Lett. 29, 854–856 (2004). [CrossRef] [PubMed]
  62. F. Zhang, I. Yamaguchi, and L. P. Yaroslavsky, “Algorithm for reconstruction of digital holograms with adjustable magnification,” Opt. Lett. 29, 1668–1670 (2004). [CrossRef] [PubMed]
  63. D. Wang, J. Zhao, F. Zhang, G. Pedrini, and W. Osten, “High-fidelity numerical realization of multiple-step Fresnel propagation for the reconstruction of digital holograms,” Appl. Opt. 47, D12–D20 (2008). [CrossRef] [PubMed]
  64. T. Colomb, F. Montfort, J. Kühn, N. Aspert, E. Cuche, A. Marian, F. Charrière, S. Bourquin, P. Marquet, and C. Depeursinge, “Numerical parametric lens for shifting, magnification, and complete aberration compensation in digital holographic microscopy,” J. Opt. Soc. Am. A 23, 3177–3190(2006). [CrossRef]
  65. J. Li, Z. Peng, P. Tankam, Q. Song, and P. Picart, “Digital holographic reconstruction of a local object field using an adjustable magnification,” J. Opt. Soc. Am. A 28, 1291–1296(2011). [CrossRef]
  66. J. F. Restrepo and J. Garcia-Sucerquia, “Magnified reconstruction of digitally recorded holograms by Fresnel-Bluestein transform,” Appl. Opt. 49, 6430–6435 (2010). [CrossRef] [PubMed]
  67. L. Bleustein, “Linear filtering approach to the computation of the discrete Fourier transform,” IEEE Trans. Audio Electroacoust. 18, 451–455 (1970). [CrossRef]
  68. B. Hennelly, D. Kelly, N. Pandey, and D. Monaghan, “Zooming algorithms for digital holography,” J. Phys. Conf. Ser. 206, 012027 (2010). [CrossRef]
  69. M. Liebling, T. Blu, and M. Unser, “Fresnelet: new multiresolution wavelet bases for digital holography,” IEEE Trans. Image Process. 12, 29–43 (2003). [CrossRef]
  70. E. Darakis and J. J. Soraghan, “Use of Fresnelets for phase-shift digital hologram compression,” IEEE Trans. Image Process. 15, 3804–3811 (2006). [CrossRef] [PubMed]
  71. E. Darakis, T. J. Naughton, and J. J. Soraghan, “Compression defect in different reconstructions from phase-shifting digital holographic data,” Appl. Opt. 46, 4579–4586(2007). [CrossRef] [PubMed]
  72. M. Liebling, T. Blu, and M. Unser, “Non-linear Fresnelet approximation for interference term suppression in digital holography,” Proc. SPIE 5207, 553–559 (2003). [CrossRef]
  73. M. Liebling, T. Blu, and M. Unser, “Complex-wave retrieval from a single off-axis hologram,” J. Opt. Soc. Am. A 21, 367–377 (2004). [CrossRef]
  74. M. Liebling and M. Unser, “Autofocus for digital Fresnel holograms by use of a Fresnelet-sparsity criterion,” J. Opt. Soc. Am. A 21, 2424–2430 (2004). [CrossRef]
  75. M. Unser, A. Aldroubi, and M. Eden, “A family of polynomial spline wavelet transforms,” Signal Process. 30, 141–162 (1993). [CrossRef]
  76. L. Onural, “Sampling of the diffraction field,” Appl. Opt. 39, 5929–5935 (2000). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited