OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 50, Iss. 34 — Dec. 1, 2011
  • pp: H159–H164

In-line hologram reconstruction using Hartley transform

Meriç Özcan  »View Author Affiliations


Applied Optics, Vol. 50, Issue 34, pp. H159-H164 (2011)
http://dx.doi.org/10.1364/AO.50.00H159


View Full Text Article

Enhanced HTML    Acrobat PDF (238 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In reconstruction of in-line recorded holograms, zero-order and conjugate images appear on the same physical location as the object image. Here we propose a method, new to our knowledge, to separate the object image from the others by using two quadrature phase-shifted holograms. The method uses the Hartley transform and a phase retrieval type of algorithm on the difference hologram.

© 2011 Optical Society of America

OCIS Codes
(100.3010) Image processing : Image reconstruction techniques
(100.5070) Image processing : Phase retrieval
(110.6980) Imaging systems : Transforms
(090.1995) Holography : Digital holography

ToC Category:
Holographic Reconstruction, Display, and Projection

History
Original Manuscript: July 5, 2011
Revised Manuscript: October 21, 2011
Manuscript Accepted: October 21, 2011
Published: November 21, 2011

Virtual Issues
Digital Holography and 3D Imaging 2011 (2011) Applied Optics

Citation
Meriç Özcan, "In-line hologram reconstruction using Hartley transform," Appl. Opt. 50, H159-H164 (2011)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-50-34-H159


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. Gabor, “A new microscopic principle,” Nature 161, 777–778(1948). [CrossRef]
  2. J. W. Goodman, “An introduction to the principles and applications of holography,” Proc. IEEE 59, 1292–1304 (1971). [CrossRef]
  3. J. W. Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw-Hill, 1996).
  4. P. Marquet, E. Cuche, and C. Depeursinge, “Spatial filtering for zero-order and twin-image elimination in digital off-axis holography,” Appl. Opt. 39, 4070–4075 (2000). [CrossRef]
  5. U. Schnars and W. Jüptner, Digital Holography: Digital Hologram Recording, Numerical Reconstruction, and Related Techniques (Springer-Verlag, 2005).
  6. S. Ohta, I. Yamaguchi, J. Kato, and J. Mizuno, “Image formation in phase-shifting digital holography and applications to microscopy,” Appl. Opt. 40, 6177–6186 (2001). [CrossRef]
  7. H. Kawai, Y. Takaki, and H. Ohzu, “Hybrid holographic microscopy free of conjugate and zero-order images,” Appl. Opt. 38, 4990–4996 (1999). [CrossRef]
  8. E. Nitanai, T. Nomura, S. Murata, and T. Numata, “Phase-shifting digital holography with a phase difference between orthogonal polarizations,” Appl. Opt. 45, 4873–4877(2006). [CrossRef]
  9. M. Sasada, Y. Awatsuji, and T. Kubota, “Parallel quasi-phase shifting digital holography,” Appl. Phys. Lett. 85, 1069–1071(2004). [CrossRef]
  10. T. Kim, T.-C. Poon, and G. Indebetouw, “Twin-image removal by digital filtering and optical scanning holography,” in Proceedings of the Thirtieth Southeastern Symposium on System Theory (IEEE, 1998), pp. 191–195.
  11. L. Onural and P. D. Scott, “Digital decoding of in-line holograms,” Opt. Eng. 26, 1124–1132 (1987).
  12. T. Blu, M. Liebling, and M. A. Unser, “Non-linear Fresnelet approximation for interference term suppression in digital holography,” Proc. SPIE 5207, 553–559 (2003). [CrossRef]
  13. T. Latychevskaia and H.-W. Fink, “Solution to the twin image problem in holography,” Phys. Rev. Lett. 98, 233901(2007). [CrossRef]
  14. J.-P. Liu and T.-C. Poon, “Two-step only quadrature phase-shifting holography,” Opt. Lett. 34, 250–252 (2009). [CrossRef]
  15. G.-S. Jhou, J.-P. Liu, T.-C. Poon, and P.-J. Chen, “Comparison of two-, three-, and four-exposure quadrature phase-shifting holography,” Appl. Opt. 50, 2443–2450(2011). [CrossRef]
  16. J. R. Fienup, “Phase retrieval algorithms: a comparison,” Appl. Opt. 21, 2758–2769 (1982). [CrossRef]
  17. R. N. Bracewell, The Hartley Transform (Oxford University, 1986).
  18. R. N. Bracewell, “Aspects of the Hartley transform,” Proc. IEEE 82, 381–387 (1994). [CrossRef]
  19. A. W. Lohmann, R. N. Bracewell, H. Bartelt, and N. Streibl, “Optical synthesis of the Hartley transform,” Appl. Opt. 24, 1401–1402 (1985). [CrossRef]
  20. J. D. Villasenor, “Optical Hartley transforms,” Proc. IEEE 82, 391–399 (1994). [CrossRef]
  21. H. Hamam, “Hartley holograms,” Appl. Opt. 35, 5286–5292(1996). [CrossRef]
  22. V. P. Titar’, T. V. Bogdanova, and E. Ya. Tomchuk, “Hartley holograms,” Opt. Spectrosc. 85, 956–962 (1998).
  23. T. V. Bogdanova and V. P. Titar’, “Complex optical holograms,” J. Opt. Technol. 71, 298–306 (2004). [CrossRef]
  24. M. Özcan and M. Bayraktar, “Digital holography image reconstruction methods,” Proc. SPIE 7233, 72330B (2009).
  25. D. Sayre, J. Miao, and H. N. Chapman, “Phase retrieval from the magnitude of the Fourier transforms of nonperiodic objects,” J. Opt. Soc. Am. A 15, 1662–1669 (1998). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited