OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 50, Iss. 34 — Dec. 1, 2011
  • pp: H253–H264

Partially coherent lensfree tomographic microscopy [Invited]

Serhan O. Isikman, Waheb Bishara, and Aydogan Ozcan  »View Author Affiliations

Applied Optics, Vol. 50, Issue 34, pp. H253-H264 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (962 KB) ISP Components
Browse Datasets: MIDAS Click for help

Full-Text PDF contains links to datasets. See ISP homepage for software requirements and other information.

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Optical sectioning of biological specimens provides detailed volumetric information regarding their internal structure. To provide a complementary approach to existing three-dimensional (3D) microscopy modalities, we have recently demonstrated lensfree optical tomography that offers high-throughput imaging within a compact and simple platform. In this approach, in-line holograms of objects at different angles of partially coherent illumination are recorded using a digital sensor-array, which enables computing pixel super-resolved tomographic images of the specimen. This imaging modality, which forms the focus of this review, offers micrometer-scale 3D resolution over large imaging volumes of, for example, 1015mm3, and can be assembled in light weight and compact architectures. Therefore, lensfree optical tomography might be particularly useful for lab-on-a-chip applications as well as for microscopy needs in resource-limited settings.

© 2011 Optical Society of America

OCIS Codes
(110.0180) Imaging systems : Microscopy
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(170.6900) Medical optics and biotechnology : Three-dimensional microscopy
(110.1758) Imaging systems : Computational imaging
(090.1995) Holography : Digital holography
(110.6955) Imaging systems : Tomographic imaging

ToC Category:
Invited ISP Papers

Original Manuscript: August 1, 2011
Revised Manuscript: October 11, 2011
Manuscript Accepted: October 11, 2011
Published: December 5, 2011

Virtual Issues
Vol. 7, Iss. 2 Virtual Journal for Biomedical Optics
Digital Holography and 3D Imaging 2011 (2011) Applied Optics

Serhan O. Isikman, Waheb Bishara, and Aydogan Ozcan, "Partially coherent lensfree tomographic microscopy [Invited]," Appl. Opt. 50, H253-H264 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. Gabor, “A new microscopic principle,” Nature 161, 777–778 (1948). [CrossRef]
  2. J. Garcia-Sucerquia, W. Xu, S. K. Jericho, P. Klages, M. H. Jericho, and H. J. Kreuzer, “Digital in-line holographic microscopy,” Appl. Opt. 45, 836–850 (2006). [CrossRef]
  3. W. Xu, M. H. Jericho, I. A. Meinertzhagen, and H. J. Kreuzer, “Digital in-line holography for biological applications,” Proc. Natl. Acad. Sci. USA 98, 11301–11305 (2001). [CrossRef]
  4. E. N. Leith, J. Upatnieks, and K. A. Haines, “Microscopy by wavefront reconstruction,” J. Opt. Soc. Am. 55, 981–986 (1965). [CrossRef]
  5. U. Schnars and W. Jüptner, “Direct recording of holograms by a CCD target and numerical reconstruction,” Appl. Opt. 33, 179–181 (1994). [CrossRef]
  6. L. Onural and P. D. Scott, “Digital decoding of in-line holograms,” Opt. Eng. 26, 1124–1132 (1987).
  7. E. Cuche, F. Bevilacqua, and C. Depeursinge, “Digital holography for quantitative phase-contrast imaging,” Opt. Lett. 24, 291–293 (1999). [CrossRef]
  8. D. Carl, B. Kemper, G. Wernicke, and G. von Ball, “Parameter-optimized digital holographic microscope for high-resolution living-cell analysis,” Appl. Opt. 43, 6536–6544 (2004). [CrossRef]
  9. G. Popescu, T. Ikeda, R. R. Dasari, and M. S. Feld, “Diffraction phase microscopy for quantifying cell structure and dynamics,” Opt. Lett. 31, 775–777 (2006). [CrossRef]
  10. H. Ding and G. Popescu, “Instantaneous spatial light interference microscopy,” Opt. Express 18, 1569–1575 (2010). [CrossRef]
  11. S. D. Babacan, Z. Wang, M. Do, and G. Popescu, “Cell imaging beyond the diffraction limit using sparse deconvolution spatial light interference microscopy,” Biomed. Opt. Express 2, 1815–1827 (2011). [CrossRef]
  12. I. Yamaguchi and T. Zhang, “Phase-shifting digital holography,” Opt. Lett. 22, 1268–1270 (1997). [CrossRef]
  13. T. Zhang and I. Yamaguchi, “Three-dimensional microscopy with phase-shifting digital holography,” Opt. Lett. 23, 1221–1223 (1998). [CrossRef]
  14. P. Ferraro, S. De Nicola, A. Finizio, G. Coppola, S. Grilli, C. Magro, and G. Pierattini, “Compensation of the inherent wave front curvature in digital holographic coherent microscopy for quantitative phase-contrast imaging,” Appl. Opt. 42, 1938–1946 (2003).
  15. J. P. Liu and T. C. Poon, “Two-step-only quadrature phase-shifting digital holography,” Opt. Lett. 34, 250–252 (2009). [CrossRef]
  16. Z. Zalevsky and D. Mendlovic, Optical Super Resolution (Springer, Heidelberg, 2002).
  17. Z. Zalevsky, D. Mendlovic, and A. W. Lohmann, “Super resolution optical systems using fixed gratings,” Opt. Commun. 163, 79–85 (1999). [CrossRef]
  18. J. García, Z. Zalevsky, and D. Fixler, “Synthetic aperture superresolution by speckle pattern projection,” Opt. Express 13, 6073–6078 (2005). [CrossRef]
  19. L. Tian, N. Loomis, J. A. Domínguez-Caballero, and G. Barbastathis, “Quantitative measurement of size and three-dimensional position of fast-moving bubbles in air-water mixture flows using digital holography,” Appl. Opt. 49, 1549–1554 (2010). [CrossRef]
  20. F. Dubois, L. Joannes, and J. C. Legro, “Improved three-dimensional imaging with a digital holography microscope with a source of partial spatial coherence,” Appl. Opt. 38, 7085–7094 (1999). [CrossRef]
  21. S. S. Kou and C. J. R. Sheppard, “Image formation in holographic tomography: high-aperture imaging conditions,” Appl. Opt. 48, H168–H175 (2009). [CrossRef]
  22. E. Wolf, “Three-dimensional structure determination of semi-transparent objects from holographic data,” Opt. Commun. 1, 153–156 (1969). [CrossRef]
  23. E. Y. Lam, X. Zhang, H. Vo, T. C. Poon, and G. Indebetouw, “Three-dimensional microscopy and sectional image reconstruction using optical scanning holography,” Appl. Opt. 48, H113–H119 (2009). [CrossRef]
  24. D. J. Brady, K. Choi, D. L. Marks, R. Horisaki, and S. Lim, “Compressive holography,” Opt. Express 17, 13040–13049 (2009). [CrossRef]
  25. H. Meng and F. Hussain, “In-line recording and off-axis viewing technique for holographic particle velocimetry,” Appl. Opt. 34, 1827–1840 (1995). [CrossRef]
  26. F. Charrière, N. Pavillon, T. Colomb, C. Depeursinge, T. J. Heger, E. A. D. Mitchell, P. Marquet, and B. Rappaz, “Living specimen tomography by digital holographic microscopy: Morphometry of testate amoeba,” Opt. Express 14, 7005–7013 (2006). [CrossRef]
  27. O. Haeberle, K. Belkebir, H. Giovaninni, and A. Sentenac, “Tomographic diffractive microscopy: Basics, techniques and perspectives,” J. Mod. Opt. 57, 686–699 (2010). [CrossRef]
  28. Y. Sung, W. Choi, C. Fang-Yen, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Optical diffraction tomography for high resolution live cell imaging,” Opt. Express 17, 266–277 (2009). [CrossRef]
  29. M. Debailleul, B. Simon, V. Georges, O. Haeberle, and V. Lauer, “Holographic microscopy and diffractive microtomography of transparent samples,” Meas. Sci. Technol. 19, 074009 (2008). [CrossRef]
  30. C. Fang-Yen, Y. Sung, C. J. Holbrow, R. R. Dasari, and M. S. Feld, “Video-rate tomographic phase microscopy,” J. Biomed. Opt. 16, 011005 (2011). [CrossRef]
  31. T. C. Poon, M. H. Wu, K. Shinoda, and Y. Suzuki, “Optical scanning holography,” Proc. IEEE 84, 753–764 (1996). [CrossRef]
  32. Y. C. Lin, C. J. Cheng, and T. C. Poon, “Optical sectioning with a low-coherence phase-shifting digital holographic microscope,” Appl. Opt. 50, B25–B30 (2011). [CrossRef]
  33. L. M. León, G. Pedrini, and W. Osten, “Applications of short-coherence digital holography in microscopy,” Appl. Opt. 44, 3977–3984 (2005). [CrossRef]
  34. L. Yu and M. K. Kim, “Wavelength-scanning digital interference holography for tomographic three-dimensional imaging by use of the angular spectrum method,” Opt. Lett. 30, 2092–2094 (2005). [CrossRef]
  35. J. Hahn, S. Lim, K. Choi, R. Horisaki, and D. J. Brady, “Video-rate compressive holographic microscopic tomography,” Opt. Express 19, 7289–7298 (2011). [CrossRef]
  36. I. Moon and B. Javidi, “3-D visualization and identification of biological microorganisms using partially temporal incoherent light in-line computational holographic imaging,” IEEE Trans. Med. Imaging 27, 1782–1790 (2008). [CrossRef]
  37. I. Moon, M. Daneshpanah, B. Javidi, and A. Stern, “Automated three dimensional identification and tracking of micro/nano biological organisms by computational holographic microscopy,” Proc. IEEE 97, 990–1010 (2009). [CrossRef]
  38. B. Javidi, I. Moon, S. Yeom, and E. Carapezza, “Three-dimensional imaging and recognition of microorganism using single-exposure on-line (SEOL) digital holography,” Opt. Express 13, 4492–4506 (2005). [CrossRef]
  39. J. Rosen and G. Brooker, “Non-scanning motionless fluorescence three-dimensional holographic microscopy,” Nat. Photon. 2, 190–195 (2008). [CrossRef]
  40. J. Rosen and G. Brooker, “Fluorescence incoherent color holography,” Opt. Express 15, 2244–2250 (2007). [CrossRef]
  41. J. Rosen, B. Katz, and G. Brooker, “Review of three-dimensional holographic imaging by Fresnel incoherent correlation holograms,” 3D Research 1, 28–35 (2009).
  42. S. O. Isikman, W. Bishara, S. Mavandadi, S. W. Yu, S. Feng, R. Lau, and A. Ozcan, “Lens-free optical tomographic microscope with a large imaging volume on a chip,” Proc. Nat. Acad. Sci. 108, 7296–7301 (2011).
  43. S. O. Isikman, W. Bishara, U. Sikora, O. Yaglidere, J. Yeah, and A. Ozcan, “Field-portable Lensfree Tomographic Microscope,” Lab Chip 11, 2222–2230 (2011). [CrossRef]
  44. S. O. Isikman, W. Bishara, H. Zhu, and A. Ozcan, “Optofluidic Tomography on a chip,” Appl. Phys. Lett. 98, 161109 (2011). [CrossRef]
  45. C. Oh, S. O. Isikman, B. Khademhosseini, and A. Ozcan, “On-chip differential interference contrast microscopy using lensless digital holography,” Opt. Express 18, 4717–4726 (2010). [CrossRef]
  46. O. Mudanyali, D. Tseng, C. Oh, S. O. Isikman, I. Sencan, W. Bishara, C. Oztoprak, S. Seo, B. Khademhosseini, and A. Ozcan, “Compact, light-weight and cost-effective microscope based on lensless incoherent holography for telemedicine applications,” Lab Chip 10, 1417–1428 (2010). [CrossRef]
  47. D. J. Brady, Optical Imaging and Spectroscopy (John Wiley & Sons, 2009).
  48. J. W. Goodman, Introduction to Fourier Optics (Roberts & Company Publishers, 2005).
  49. W. Bishara, T. Su, A. F. Coskun, and A. Ozcan, “Lensfree on-chip microscopy over a wide field-of-view using pixel super-resolution,” Opt. Express 18, 11181–11191 (2010). [CrossRef]
  50. W. Bishara, U. Sikora, O. Mudanyali, T. Su, O. Yaglidere, S. Luckhart, and A. Ozcan, “Holographic pixel super-resolution in portable lensless on-chip microscopy using a fiber-optic array,” Lab Chip 11, 1276–1279 (2011). [CrossRef]
  51. J. Sharpe, U. Ahlgren, P. Perry, B. Hill, A. Ross, J. Hecksher-Sørensen, R. Baldock, and D. Davidson, “Optical projection tomography as a tool for 3D Microscopy and gene expression studies,” Science 296, 541–545 (2002). [CrossRef]
  52. M. Radermacher, Weighted Back-Projection Methods. Electron Tomography: Methods for Three Dimensional Visualization of Structures in the Cell, 2nd ed. (Springer, 2006).
  53. C. Messaoudi, T. Boudier, C. O. S. Sorzano, and S. Marco, “TomoJ: tomography software for three-dimensional reconstruction in transmission electron microscopy,” BMC Bioinfo. 8, 288 (2007).
  54. D. N. Mastronarde, “Dual-axis tomography: An approach with alignment methods that preserve resolution,” J. Struct. Biol. 120, 343–352 (1997). [CrossRef]
  55. W. Y. Oh, B. E. Bouma, N. Iftimia, R. Yelin, and G. J. Tearney, “Spectrally-modulated full-field optical coherence microscopy for ultrahigh-resolution endoscopic imaging,” Opt. Express 14, 8675–8684 (2006). [CrossRef]
  56. V. Ntziachristos, “Going deeper than microscopy: The optical imaging frontier in biology,” Nat. Methods 7, 603–614 (2010). [CrossRef]
  57. D. Psaltis, S. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442, 381–386 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited