OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 50, Iss. 34 — Dec. 1, 2011
  • pp: H56–H61

Zero-order noise suppression with various space-shifting manipulations of reconstructed images in digital holography

Jian Wu, Ming Feng Lu, Yan Chao Dong, Ming Zheng, Meng Huang, and Yi Nan Wu  »View Author Affiliations


Applied Optics, Vol. 50, Issue 34, pp. H56-H61 (2011)
http://dx.doi.org/10.1364/AO.50.000H56


View Full Text Article

Enhanced HTML    Acrobat PDF (432 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In this paper, we describe various numerical space-shifting manipulations of the reconstructed images to remove the dc noise in the reconstruction, in terms of the periodicity characteristics of images in digital holography. The theoretical interpretation on different reconstruction periods of the image and the dc noise is described in detail for the first time, to the best of our knowledge. It is related to CCD sampling periods or frequencies for the fringes and the dc term of a hologram. With the calculations of Hadamard product of two different spatially shifted images and subsequent extraction of the root of it, the dc noise can be suppressed effectively and a clear image with the original intensity contrast can be obtained at the center in the hologram reconstruction, particularly when the image and the dc noise are completely or partially superposed with each other. The experiments for both in-line and off-axis imaging cases show that all results are completely consistent with theoretical predictions.

© 2011 Optical Society of America

OCIS Codes
(090.1995) Holography : Digital holography
(070.2025) Fourier optics and signal processing : Discrete optical signal processing
(100.3008) Image processing : Image recognition, algorithms and filters

ToC Category:
Holographic Reconstruction, Display, and Projection

History
Original Manuscript: May 31, 2011
Revised Manuscript: July 21, 2011
Manuscript Accepted: September 9, 2011
Published: October 28, 2011

Virtual Issues
Digital Holography and 3D Imaging 2011 (2011) Applied Optics

Citation
Jian Wu, Ming Feng Lu, Yan Chao Dong, Ming Zheng, Meng Huang, and Yi Nan Wu, "Zero-order noise suppression with various space-shifting manipulations of reconstructed images in digital holography," Appl. Opt. 50, H56-H61 (2011)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-50-34-H56


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. E. Cuche, P. Marquet, and C. Depeursinge, “Spatial filtering for zero-order and twin-image elimination in digital off-axis holography,” Appl. Opt. 39, 4070–4075 (2000). [CrossRef]
  2. G.-L. Chen, C.-Y. Lin, M.-K. Kuo, and C.-C. Chang, “Numerical reconstruction and twin-image suppression using an off-axis Fresnel digital hologram,” Appl. Phys. B 90, 527–532 (2008). [CrossRef]
  3. J. A. H. Ramirez and J. Garcia-Sucerquia, “Digital off-axis holography without zero-order diffraction via phase manipulation,” Opt. Commun. 277, 259–263 (2007). [CrossRef]
  4. Q. Lu, B. Ge, J. Jiang, and Y. Zhang, “Design of the experimental system of digital off-axis holography and analysis of zero-order image,” Proc. SPIE 5636, 254–259 (2005). [CrossRef]
  5. Y. Zhang, Q. Lu, and B. Ge, “Elimination of zero-order diffraction in digital off-axis holography,” Opt. Commun. 240, 261–267 (2004). [CrossRef]
  6. M. Liebling, T. Blu, and M. Unser, “Non-linear Fresnelet approximation for interference term suppression in digital holography,” Proc. SPIE 5207, 553–559 (2003). [CrossRef]
  7. J. Garcia-Sucerquia, J. A. H. Ramirez, and D. V. Prieto, “DC term filtering techniques in digital holography,” Proc. SPIE 5622, 1353–1358 (2004). [CrossRef]
  8. M. Gross and M. Atlan, “Digital holography with ultimate sensitivity,” Opt. Lett. 32, 909–911 (2007). [CrossRef] [PubMed]
  9. I. Yamaguchi and T. Zhang, “Phase-shifting digital holography,” Opt. Lett. 22, 1268–1270 (1997). [CrossRef] [PubMed]
  10. J.-P. Liu and T.-C. Poon, “Two-step-only quadrature phase-shifting digital holography,” Opt. Lett. 34, 250–252 (2009). [CrossRef] [PubMed]
  11. Y. Awatsuji, A. Fujii, T. Kubota, and O. Matoba, “Parallel three-step phase-shifting digital holography,” Appl. Opt. 45, 2995–3002 (2006). [CrossRef] [PubMed]
  12. Y. Awatsuji, M. Sasada, A. Fujii, and T. Kubota, “Scheme to improve the reconstructed image in parallel quasi-phase-shifting digital holography,” Appl. Opt. 45, 968–974 (2006). [CrossRef] [PubMed]
  13. V. Mico, J. Garcia, Z. Zalevsky, and B. Javidi, “Phase-shifting Gabor holography,” Opt. Lett. 34, 1492–1494 (2009). [CrossRef] [PubMed]
  14. W.-T. Hsieh, M.-K. Kuo, H. F. Yau, and C.-C. Chang, “A simple arbitrary phase-step digital holographic reconstruction approach without blurring using two holograms,” Opt. Rev. 16, 466–471 (2009). [CrossRef]
  15. J.-P. Liu, T.-C. Poon, G.-S. Jhou, and P.-J. Chen, “Comparison of two-, three-, and four-exposure quadrature phase-shifting holography,” Appl. Opt. 50, 2443–2450 (2011). [CrossRef] [PubMed]
  16. W. Pan, W. Lu, Y. Zhu, and J. Wang, “One-shot in-line digital holography based Hilbert phase-shifting,” Chin. Opt. Lett. 7, 1123–1125 (2009). [CrossRef]
  17. L. Z. Cai, Q. Liu, and X. L. Yang, “Phase-shift extraction and wave-front reconstruction in phase-shifting interferometry with arbitrary phase steps,” Opt. Lett. 28, 1808–1810 (2003). [CrossRef] [PubMed]
  18. P. Guo and A. J. Devaney, “Digital microscopy using phase-shifting digital holography with two reference waves,” Opt. Lett. 29, 857–859 (2004). [CrossRef] [PubMed]
  19. X. F. Meng, L. Z. Cai, Y. R. Wang, X. L. Yang, X. F. Xu, G. Y. Dong, X. X. Shen, and X. C. Cheng, “Wavefront reconstruction by two-step generalized phase-shifting interferometry,” Opt. Commun. 281, 5701–5705 (2008). [CrossRef]
  20. X. F. Xu, L. Z. Cai, Y. R. Wang, and R. S. Yan, “Direct phase shift extraction and wavefront reconstruction in two-step generalized phase-shifting interferometry,” J. Opt. 12, 015301 (2010). [CrossRef]
  21. X. F. Meng, X. Peng, L. Z. Cai, A. M. Li, J. P. Guo, and Y. R. Wang, “Wavefront reconstruction and three-dimensional shape measurement by two-step dc-term-suppressed phase-shifted intensities,” Opt. Lett. 34, 1210–1212 (2009). [CrossRef] [PubMed]
  22. J. Hahn, H. Kim, S.-W. Cho, and B. Lee, “Phase-shifting interferometry with genetic algorithm-based twin image noise elimination,” Appl. Opt. 47, 4068–4076 (2008). [CrossRef] [PubMed]
  23. C. S. Seelamantula, N. Pavillon, C. Depeursinge, and M. Unser, “Zero-order-free image reconstruction in digital holographic microscopy,” in IEEE International Symposium on Biomedical Imaging: From Nano to Macro, 2009, ISBI’09 (2009), pp. 201–204. [CrossRef]
  24. G.-L. Chen, C.-Y. Lin, M.-K. Kuo, and C.-C. Chang, “Numerical suppression of zero-order image in digital holography,” Opt. Express 15, 8851–8856 (2007). [CrossRef] [PubMed]
  25. Y. Dong and J. Wu, “Space-shifting digital holography with dc term removal,” Opt. Lett. 35, 1287–1289 (2010). [CrossRef] [PubMed]
  26. U. Schnars and W. Jüptner, Digital Holography (Springer2005).
  27. U. Schnars and W. Jüptner, “Digital recording and numerical reconstruction of holograms,” Meas. Sci. Technol. 13, R85–R101 (2002). [CrossRef]
  28. H. Cho, J.-K. Woo, D. Kim, S. Shin, and Y. Yu, “DC suppression in in-line digital holographic microscopes on the basis of an intensity-averaging method using variable pixel numbers,” Opt. Laser Technol. 41, 741–745 (2009). [CrossRef]
  29. J. Weng, J. Zhong, and C. Hu, “Digital reconstruction based on angular spectrum diffraction with the ridge of wavelet transform in holographic phase-contrast microscopy,” Opt. Express 16, 21971–21981 (2008). [CrossRef] [PubMed]
  30. C. McElhinney, B. M. Hennelly, L. Ahrenberg, and T. J. Naughton, “Removing the twin image in digital holography by segmented filtering of in-focus twin image,” Proc. SPIE 7072, 707208 (2008). [CrossRef]
  31. A. Asundi and V. R. Singh, “Sectioning of amplitude images in digital holography,” Meas. Sci. Technol. 17, 75–78(2006). [CrossRef]
  32. W. Wang, W. Yue, and L. Ai, “A new method for eliminating zero-order and conjugate image in digital holography,” Proc. SPIE 5636, 849–855 (2005). [CrossRef]
  33. C. Liu, Y. Li, X. Cheng, Z. Liu, F. Bo, and J. Zhu, “Elimination of zero-order diffraction in digital holography,” Opt. Eng. 41, 2434–2437 (2002). [CrossRef]
  34. T. M. Kreis and W. P. O. Juptner, “Suppression of the dc term in digital holography,” Opt. Eng. 36, 2357–2360(1997). [CrossRef]
  35. T. M. Kreis, “Frequency analysis of digital holography,” Opt. Eng. 41, 771–778 (2002). [CrossRef]
  36. T. M. Kreis, “Frequency analysis of digital holography with reconstruction by convolution,” Opt. Eng. 41, 1829–1839(2002). [CrossRef]
  37. C.-S. Guo, L. Zhang, and H.-T. Wang, “Effect of the fill factor of CCD pixels on digital holograms: comment on the papers ‘Frequency analysis of digital holography’ and ‘Frequency analysis of digital holography with reconstruction by convolution’,” Opt. Eng. 42, 2768–2771 (2003). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited