OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 50, Iss. 34 — Dec. 1, 2011
  • pp: H68–H74

Phase-conjugate holographic lithography based on micromirror array recording

Yongjun Lim, Joonku Hahn, and Byoungho Lee  »View Author Affiliations


Applied Optics, Vol. 50, Issue 34, pp. H68-H74 (2011)
http://dx.doi.org/10.1364/AO.50.000H68


View Full Text Article

Enhanced HTML    Acrobat PDF (674 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present phase-conjugate holographic lithography with a hologram recorded by a digital micromirror device (DMD) and a telecentric lens. In our lithography system, a phase-conjugate hologram is applied instead of conventional masks or reticles to form patterns. This method has the advantage of increasing focus range, and it is applicable to the formation of patterns on fairly uneven surfaces. The hologram pattern is dynamically generated by the DMD, and its resolution is mainly determined by the demagnification of the telecentric lens. We experimentally demonstrate that our holographic lithographic system has a large focus range, and it is feasible to make a large-area hologram by stitching each pattern generated by the DMD without a falling off in resolution.

© 2011 Optical Society of America

OCIS Codes
(090.7330) Holography : Volume gratings
(220.3740) Optical design and fabrication : Lithography
(090.1995) Holography : Digital holography

ToC Category:
Optimization, Improvement, Enhancement, and Coding in Digital Holography

History
Original Manuscript: August 1, 2011
Revised Manuscript: September 30, 2011
Manuscript Accepted: October 13, 2011
Published: November 10, 2011

Virtual Issues
Digital Holography and 3D Imaging 2011 (2011) Applied Optics

Citation
Yongjun Lim, Joonku Hahn, and Byoungho Lee, "Phase-conjugate holographic lithography based on micromirror array recording," Appl. Opt. 50, H68-H74 (2011)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-50-34-H68


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Rothschild, T. Bloomstein, T. Fedynyshyn, R. Kunz, V. Liberman, M. Switkes, N. Efremow, S. Palmacci, J. Sedlacek, and D. Hardy, “Recent trends in optical lithography,” Lincoln Lab. J. 14, 221–236 (2003).
  2. S. Okazaki, “Resolution limits of optical lithography,” J. Vac. Sci. Technol. B 9, 2829–2833 (1991). [CrossRef]
  3. T. A. Brunner, “Why optical lithography will live forever,” J. Vac. Sci. Technol. B 21, 2632–2637 (2003). [CrossRef]
  4. E. H. Anderson, C. M. Horwitz, and H. I. Smith, “Holographic lithography with thick photoresist,” Appl. Phys. Lett. 43, 874–875 (1983). [CrossRef]
  5. J. Brook and R. Daendliker, “Holographic photolithography for submicron VLSI structures,” Microelectron. Eng. 11, 127–131(1990). [CrossRef]
  6. F. Clube, S. Gray, D. Struchen, J. C. Tisserand, S. Malfoy, and Y. Darbellay, “Holographic microlithography,” Opt. Eng. 34, 2724–2730 (1995). [CrossRef]
  7. J. M. Carter, D. B. Olster, M. L. Schattenburg, A. Yen, and H. I. Smith, “Large-area, freestanding gratings for atom interferometry produced using holographic lithography,” J. Vac. Sci. Technol. B 10, 2909–2911 (1992). [CrossRef]
  8. T. Kondo, S. Juodkazis, V. Mizeikis, H. Misawa, and S. Matsuo, “Holographic lithography of periodic two- and three-dimensional microstructures in photoresist SU-8,” Opt. Express 14, 7943–7953 (2006). [CrossRef] [PubMed]
  9. G. P. Watson, V. Aksyuk, M. E. Simon, D. M. Tennant, R. A. Cirelli, W. M. Mansfield, F. Pardo, D. O. Lopez, C. A. Bolle, A. R. Papazian, N. Basavanhally, J. Lee, R. Fullowan, F. Klemens, J. Miner, A. Kornblit, T. Sorsch, L. Fetter, M. Peabody, J. E. Bower, J. S. Weiner, and Y. L. Low, “Spatial light modulator for maskless optical projection lithography,”J. Vac. Sci. Technol. B 24, 2852–2856 (2006). [CrossRef]
  10. I. W. Jung, J. S. Wang, and O. Solgaard, “Optical pattern generation using a, spatial light modulator for maskless lithography,” IEEE J. Sel. Top. Quantum Electron. 13, 147–154(2007). [CrossRef]
  11. Y. Lim, J. Hahn, and B. Lee, “Volumetric film patterning method using a digital micro-mirror device and telecentric lens,” in Digital Holography and Three-Dimensional Imaging, OSA Technical Digest (CD) (Optical Society of America, 2008), paper DWB4.
  12. Y. Lim, “Study on generation and application of coupled light waves based on surface plasmons and holography,” Ph.D dissertation (Seoul National University, 2010).
  13. G. P. Watson, V. Aksyuk, D. M. Tennant, and R. A. Cirelli, “Comparison of tilting and piston mirror elements for 65 nmnode spatial light modulator optical maskless lithography,” J. Vac. Sci. Technol. B 22, 3038–3042 (2004). [CrossRef]
  14. D. Henry, J. W. Gemmink, L. Pain, and S. V. Postnikov, “Status and future of maskless lithography,” Microelectron. Eng. 83, 951–955 (2006). [CrossRef]
  15. S. E. Chung, W. Park, H. Park, K. Yu, N. Park, and S. Kwon, “Optofluidic maskless lithography system for real-time synthesis of photopolymerized microstructures in microfluidic channels,” Appl. Phys. Lett. 91, 041106 (2007). [CrossRef]
  16. S. A. Lee, S. E. Chung, W. Park, S. H. Lee, and S. Kwon, “Three-dimensional fabrication of heterogeneous microstructures using soft membrane deformation and optofluidic maskless lithography,” Lab Chip 9, 1670–1675 (2009). [CrossRef] [PubMed]
  17. C. Sun, N. Fang, D. M. Wu, and X. Zhang, “Projection micro-stereolithography using digital micro-mirror dynamic mask,” Sens. Actuators A 121, 113–120 (2005). [CrossRef]
  18. K. Totsu, K. Fujishiro, S. Tanaka, and M. Esashi, “Fabrication of three-dimensional microstructure using maskless gray-scale lithography,” Sens. Actuators A 130, 387–392 (2006). [CrossRef]
  19. J. W. Goodman, Introduction to Fourier Optics, 3rd ed.(Roberts & Company, 2004).
  20. J. Hahn, Y. Lim, H. Kim, and B. Lee, “Micro-optical fields generated by a spatial light modulator,” J. Holography Speckle 5, 141–148 (2009). [CrossRef]
  21. K. A. Stetson, “Holography with total internally reflected light,” Appl. Phys. Lett. 11, 225–226 (1967). [CrossRef]
  22. K. A. Stetson, “Improved resolution and signal-to-noise ratios in total internal reflection holograms,” Appl. Phys. Lett. 12, 362–364 (1968). [CrossRef]
  23. S. Sainov and R. Stoycheva-Topalova, “Total internal reflection holographic recording in very thin films,” J. Opt. A 2, 117–120 (2000). [CrossRef]
  24. M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge Univ., 1999).
  25. S. Han, T. Kim, S. Chung, and B. Lee, “Dispersion characteristics of holographic multiple-channel demultiplexers,” IEEE Photon. Technol. Lett. 16, 1879–1881 (2004). [CrossRef]
  26. S. Han, B.-A. Yu, S. Chung, H. Kim, J. Paek, and B. Lee, “Filter characteristics of a chirped volume holographic grating,” Opt. Lett. 29, 107–109 (2004). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited