OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 50, Iss. 34 — Dec. 1, 2011
  • pp: H87–H115

Three-dimensional display technologies of recent interest: principles, status, and issues [Invited]

Jisoo Hong, Youngmin Kim, Hee-Jin Choi, Joonku Hahn, Jae-Hyeung Park, Hwi Kim, Sung-Wook Min, Ni Chen, and Byoungho Lee  »View Author Affiliations


Applied Optics, Vol. 50, Issue 34, pp. H87-H115 (2011)
http://dx.doi.org/10.1364/AO.50.000H87


View Full Text Article

Enhanced HTML    Acrobat PDF (3739 KB) ISP Components
Browse Datasets: MIDAS Click for help

Full-Text PDF contains links to datasets. See ISP homepage for software requirements and other information.





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Recent trends in three-dimensional (3D) display technologies are very interesting in that both old- fashioned and up-to-date technologies are being actively investigated together. The release of the first commercially successful 3D display product raised new research topics in stereoscopic display. Autostereoscopic display renders a ray field of a 3D image, whereas holography replicates a wave field of it. Many investigations have been conducted on the next candidates for commercial products to resolve existing limitations. Up-to-date see-through 3D display is a concept close to the ultimate goal of presenting seamless virtual images. Although it is still far from practical use, many efforts have been made to resolve issues such as occlusion problems.

© 2011 Optical Society of America

OCIS Codes
(100.6890) Image processing : Three-dimensional image processing
(110.2990) Imaging systems : Image formation theory

ToC Category:
Invited ISP Papers

History
Original Manuscript: August 2, 2011
Manuscript Accepted: September 5, 2011
Published: November 10, 2011

Virtual Issues
(2011) Advances in Optics and Photonics
Digital Holography and 3D Imaging 2011 (2011) Applied Optics

Citation
Jisoo Hong, Youngmin Kim, Hee-Jin Choi, Joonku Hahn, Jae-Hyeung Park, Hwi Kim, Sung-Wook Min, Ni Chen, and Byoungho Lee, "Three-dimensional display technologies of recent interest: principles, status, and issues [Invited]," Appl. Opt. 50, H87-H115 (2011)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-50-34-H87


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. C. Wheatstone, “Contributions to the physiology of vision. Part the first. On some remarkable, and hitherto unobserved, phenomena of binocular vision,” Philos. Trans. R. Soc. London 128, 371–394 (1838). [CrossRef]
  2. T. Inoue and H. Ohzu, “Accommodation responses to stereoscopic three-dimensional display,” Appl. Opt. 36, 4509–4515(1997). [CrossRef]
  3. F. L. Kooi and A. Toet, “Visual comfort of binocular and 3D displays,” Displays 25, 99–108 (2004). [CrossRef]
  4. S. S. Kim, B. H. You, H. Choi, B. H. Berkeley, and N. D. Kim, “World's first 240 Hz TFT-LCD technology for full-HD LCD-TV and its application to 3D display,” in SID International Symposium Digest of Technical Papers (Society for Information Display, 2009), Vol.  40, pp. 424–427.
  5. D.-S. Kim, S.-M. Park, J.-H. Jung, and D.-C. Hwang, “New 240 Hz driving method for Full HD and high quality 3D LCD TV,” in SID International Symposium Digest of Technical Papers (Society for Information Display, 2010), Vol.  41, pp. 762–765.
  6. H. Kang, S.-D. Roh, I.-S. Baik, H.-J. Jung, W.-N. Jeong, J.-K. Shin, and I.-J. Chung, “A novel polarizer glasses-type 3D displays with a patterned retarder,” in SID International Symposium Digest of Technical Papers (Society for Information Display, 2010), Vol.  41, pp. 1–4.
  7. S.-M. Jung, Y.-B. Lee, H.-J. Park, S.-C. Lee, W.-N. Jeong, J.-K. Shin, and I.-J. Chung, “Improvement of 3-D crosstalk with over-driving method for the active retarder 3-D displays,” in SID International Symposium Digest of Technical Papers (Society for Information Display, 2010), Vol.  41, pp. 1264–1267.
  8. S. T. de Zwart, W. L. Ijzerman, T. Dekker, and W. A. M. Wolter, “A 20 in. switchable auto-stereoscopic 2D/3D display,” in Proceedings of International Display Workshops (Society for Information Display, 2004), pp. 1459–1460.
  9. G. J. Woodgate and J. Harrold, “A new architecture for high resolution autostereoscopic 2D/3D displays using free-standing liquid crystal microlenses,” in SID International Symposium Digest of Technical Papers (Society for Information Display, 2005), Vol.  36, pp. 378–381.
  10. H.-K. Hong, S.-M. Jung, B.-J. Lee, H.-J. Im, and H.-H. Shin, “Autostereoscopic 2D/3D switching display using electric-field-driven LC lens (ELC lens),” in SID International Symposium Digest of Technical Papers (Society for Information Display, 2008), Vol.  39, pp. 348–351.
  11. C.-W. Chen, Y.-C. Huang, and Y.-P. Huang, “Fast switching Fresnel liquid crystal lens for autostereoscopic 2D/3D display,” in SID International Symposium Digest of Technical Papers (Society for Information Display, 2010), Vol.  41, pp. 428–431.
  12. A. Takagi, T. Saishu, M. Kashiwagi, K. Taira, and Y. Hirayama, “Autostereoscopic partial 2-D/3-D switchable display using liquid-crystal gradient index lens,” in SID International Symposium Digest of Technical Papers (Society for Information Display, 2010), Vol.  41, pp. 436–439.
  13. H. J. Lee, H. Nam, J. D. Lee, H. W. Jang, M. S. Song, B. S. Kim, J. S. Gu, C. Y. Park, and K. H. Choi, “A high resolution autostereoscopic display employing a time division parallax barrier,” in SID International Symposium Digest of Technical Papers (Society for Information Display, 2006), Vol.  37, pp. 81–84.
  14. G. Hamagishi, “Analysis and improvement of viewing conditions for two-view and multi-view 3D displays,” in SID International Symposium Digest of Technical Papers (Society for Information Display, 2009), Vol.  40, pp. 340–343.
  15. G. Lippmann, “La photographie integrale,” C. R. Acad. Sci. 146, 446–451 (1908).
  16. F. Okano, H. Hoshino, J. Arai, and I. Yuyama, “Real-time pickup method for a three-dimensional image based on integral photography,” Appl. Opt. 36, 1598–1603 (1997). [CrossRef]
  17. B. Lee, J.-H. Park, and S.-W. Min, “Three-dimensional display and information processing based on integral imaging,” in Digital Holography and Three-Dimensional DisplayT.-C.Poon, ed. (Springer, 2006), Chap. 12, pp. 333–378.
  18. S.-W. Min, J. Kim, and B. Lee, “New characteristic equation of three-dimensional integral imaging system and its applications,” Jpn. J. Appl. Phys. 44, L71–L74 (2005). [CrossRef]
  19. J.-H. Park, K. Hong, and B. Lee, “Recent progress in three-dimensional information processing based on integral imaging,” Appl. Opt. 48, H77–H94 (2009). [CrossRef]
  20. Y. Kim, S.-G. Park, S.-W. Min, and B. Lee, “Integral imaging system using a dual-mode technique,” Appl. Opt. 48, H71–H76 (2009). [CrossRef]
  21. J. Hahn, Y. Kim, and B. Lee, “Uniform angular resolution integral imaging display with boundary folding mirrors,” Appl. Opt. 48, 504–511 (2009). [CrossRef]
  22. Y. Takaki, K. Tanaka, and J. Nakamura, “Super multi-view display with a lower resolution flat-panel display,” Opt. Express 19, 4129–4139 (2011). [CrossRef]
  23. M. Okui, M. Kobayashi, J. Arai, and F. Okano, “Moiré fringe reduction by optical filters in integral three-dimensional imaging on a color flat-panel display,” Appl. Opt. 44, 4475–4483 (2005). [CrossRef]
  24. Y. Kim, G. Park, J.-H. Jung, J. Kim, and B. Lee, “Color moiré pattern simulation and analysis in three-dimensional integral imaging for finding the moiré-reduced tilted angle of a lens array,” Appl. Opt. 48, 2178–2187 (2009). [CrossRef]
  25. Y. Kim, S.-G. Park, S.-W. Min, and B. Lee, “Projection-type integral imaging system using multiple elemental image layers,” Appl. Opt. 50, B18–B24 (2011). [CrossRef]
  26. M. Kawakita, H. Sasaki, J. Arai, F. Okano, K. Suehiro, Y. Haino, M. Yoshimura, and M. Sato, “Geometric analysis of spatial distortion in projection-type integral imaging,” Opt. Lett. 33, 684–686 (2008). [CrossRef]
  27. F. Okano, J. Arai, and M. Kawakita, “Wave optical analysis of integral method for three-dimensional images,” Opt. Lett. 32, 364–366 (2007). [CrossRef]
  28. X. Wang and H. Hua, “Theoretical analysis for integral imaging performance based on microscanning of a microlens array,” Opt. Lett. 33, 449–451 (2008). [CrossRef]
  29. J.-S. Jang and B. Javidi, “Improved viewing resolution of three-dimensional integral imaging by use of nonstationary micro-optics,” Opt. Lett. 27, 324–326 (2002). [CrossRef]
  30. H. Choi, S.-W. Min, S. Jung, J.-H. Park, and B. Lee, “Multiple-viewing-zone integral imaging using a dynamic barrier array for three-dimensional displays,” Opt. Express 11, 927–932(2003). [CrossRef]
  31. B. Lee, S. Jung, and J.-H. Park, “Viewing-angle-enhanced integral imaging by lens switching,” Opt. Lett. 27, 818–820(2002). [CrossRef]
  32. J.-S. Jang and B. Javidi, “Improvement of viewing angle in integral imaging by use of moving lenslet arrays with low fill factor,” Appl. Opt. 42, 1996–2002 (2003). [CrossRef]
  33. S. Jung, J.-H. Park, H. Choi, and B. Lee, “Wide-viewing integral three-dimensional imaging by use of orthogonal polarization switching,” Appl. Opt. 42, 2513–2520(2003). [CrossRef]
  34. G. Park, J.-H. Jung, K. Hong, Y. Kim, Y.-H. Kim, S.-W. Min, and B. Lee, “Multi-viewer tracking integral imaging system and its viewing zone analysis,” Opt. Express 17, 17895–17908 (2009). [CrossRef]
  35. Y. Kim, J.-H. Park, S.-W. Min, S. Jung, H. Choi, and B. Lee, “A wide-viewing-angle integral 3D imaging system by curving a screen and a lens array,” Appl. Opt. 44, 546–552(2005). [CrossRef]
  36. Y. Kim, J.-H. Park, H. Choi, S. Jung, S.-W. Min, and B. Lee, “Viewing-angle-enhanced integral imaging system using a curved lens array,” Opt. Express 12, 421–429 (2004). [CrossRef]
  37. D.-H. Shin, B. Lee, and E.-S. Kim, “Multidirectional curved integral imaging with large depth by additional use of a large-aperture lens,” Appl. Opt. 45, 7375–7381 (2006). [CrossRef]
  38. J.-H. Jung, K. Hong, G. Park, I. Chung, and B. Lee, “360-degree viewable cylindrical integral imaging system using three-dimensional/two-dimensional switchable and flexible backlight,” J. Soc. Inf. Disp. 18, 527–534 (2010). [CrossRef]
  39. S.-W. Min, J. Kim, and B. Lee, “Wide-viewing projection-type integral imaging system with an embossed screen,” Opt. Lett. 29, 2420–2422 (2004). [CrossRef]
  40. R. Martinez-Cuenca, H. Navarro, G. Saavedra, B. Javidi, and M. Martinez-Corral, “Enhanced viewing-angle integral imaging by multiple-axis telecentric relay system,” Opt. Express 15, 16255–16260 (2007). [CrossRef]
  41. G. Baasantseren, J.-H. Park, K.-C. Kwon, and N. Kim, “Viewing angle enhanced integral imaging display using two elemental image masks,” Opt. Express 17, 14405–14417(2009). [CrossRef]
  42. H. Kim, J. Hahn, and B. Lee, “The use of a negative index planoconcave lens array for wide-viewing angle integral imaging,” Opt. Express 16, 21865–21880 (2008). [CrossRef]
  43. J.-Y. Jang, H.-S. Lee, S. Cha, and S.-H. Shin, “Viewing angle enhanced integral imaging display by using a high refractive index medium,” Appl. Opt. 50, B71–B76 (2011). [CrossRef]
  44. H. Liao, T. Dohi, and M. Iwahara, “Improved viewing resolution of integral videography by use of rotated prism sheets,” Opt. Express 15, 4814–4822 (2007). [CrossRef]
  45. Y. Kim, J. Kim, J.-M. Kang, J.-H. Jung, H. Choi, and B. Lee, “Point light source integral imaging with improved resolution and viewing angle by the use of electrically movable pinhole array,” Opt. Express 15, 18253–18267 (2007). [CrossRef]
  46. H. Liao, M. Iwahara, N. Hata, and T. Dohi, “High-quality integral videography using a multiprojector,” Opt. Express 12, 1067–1076 (2004). [CrossRef]
  47. H. Liao, M. Iwahara, T. Koike, N. Hata, I. Sakuma, and T. Dohi, “Scalable high-resolution integral videography autostereoscopic display with a seamless multiprojection system,” Appl. Opt. 44, 305–315 (2005). [CrossRef]
  48. J.-S. Jang, F. Jin, and B. Javidi, “Three-dimensional integral imaging with large depth of focus by use of real and virtual image fields,” Opt. Lett. 28, 1421–1423 (2003). [CrossRef]
  49. J.-H. Park, S. Jung, H. Choi, and B. Lee, “Integral imaging with multiple image planes using a uniaxial crystal plate,” Opt. Express 11, 1862–1875 (2003). [CrossRef]
  50. J.-S. Jang and B. Javidi, “Large depth-of-focus time-multiplexed three-dimensional integral imaging by use of lenslet with nonuniform focal lengths and aperture sizes,” Opt. Lett. 28, 1924–1926 (2003). [CrossRef]
  51. H. Choi, J.-H. Park, J. Hong, and B. Lee, “Depth enhanced integral imaging with a stepped lens array or a composite lens array for three-dimensional display,” Jpn. J. Appl. Phys. 43, 5330–5336 (2004). [CrossRef]
  52. S. Jung, J. Hong, J.-H. Park, Y. Kim, and B. Lee, “Depth-enhanced integral-imaging 3D display using different optical path lengths by polarization devices or mirror barrier array,” J. Soc. Inf. Disp. 12, 461–467 (2004). [CrossRef]
  53. J. Hong, J.-H. Park, S. Jung, and B. Lee, “Depth enhanced integral imaging by use of optical path control,” Opt. Lett. 29, 1790–1792 (2004). [CrossRef]
  54. H. Choi, Y. Kim, J.-H. Park, J. Kim, S.-W. Cho, and B. Lee, “Layered-panel integral imaging without the translucent problem,” Opt. Express 13, 5769–5776 (2005). [CrossRef]
  55. Y. Kim, J.-H. Park, H. Choi, J. Kim, S.-W. Cho, Y. Kim, G. Park, and B. Lee, “Depth-enhanced integral imaging display system with electrically variable image planes using polymer-dispersed liquid-crystal layers,” Appl. Opt. 46, 3766–3773(2007). [CrossRef]
  56. S.-W. Min, M. Hahn, J. Kim, and B. Lee, “Three-dimensional electro-floating display system using an integral imaging method,” Opt. Express 13, 4358–4369 (2005). [CrossRef]
  57. J. Kim, S.-W. Min, Y. Kim, and B. Lee, “Analysis on viewing characteristics of integral floating system,” Appl. Opt. 47, D80–D86 (2008). [CrossRef]
  58. J. Kim, S.-W. Min, and B. Lee, “Viewing window expansion of integral floating display,” Appl. Opt. 48, 862–867(2009). [CrossRef]
  59. J. Kim, S.-W. Min, and B. Lee, “Viewing region maximization of an integral floating display through location adjustment of viewing window,” Opt. Express 15, 13023–13034 (2007). [CrossRef]
  60. J. Kim, S.-W. Min, and B. Lee, “Floated image mapping for integral floating display,” Opt. Express 16, 8549–8556(2008). [CrossRef]
  61. H. Kakeya, “Autostereoscopic display with real-image virtual screen and light filters,” Proc. SPIE 4660, 349–357(2002). [CrossRef]
  62. H. Kakeya, “MOEVsion: simple multiview display with clear floating image,” Proc. SPIE 6490, 64900J (2007). [CrossRef]
  63. H. Choi, Y. Kim, J. Kim, S.-W. Cho, and B. Lee, “Depth- and viewing-angle-enhanced 3-D/2-D switchable display system with high contrast ratio using multiple display devices and a lens array,” J. Soc. Inf. Disp. 15, 315–320 (2007). [CrossRef]
  64. Y. Kim, H. Choi, J. Kim, S.-W. Cho, Y. Kim, G. Park, and B. Lee, “Depth-enhanced integral imaging display system with electrically variable image planes using polymer-dispersed liquid crystal layers,” Appl. Opt. 46, 3766–3773 (2007). [CrossRef]
  65. H. Choi, S.-W. Cho, J. Kim, and B. Lee, “A thin 3D-2D convertible integral imaging system using a pinhole array on a polarizer,” Opt. Express 14, 5183–5190 (2006). [CrossRef]
  66. S.-W. Cho, J.-H. Park, Y. Kim, H. Choi, J. Kim, and B. Lee, “Convertible two-dimensional–three-dimensional display using an LED array based on modified integral imaging,” Opt. Lett. 31, 2852–2854 (2006). [CrossRef]
  67. Y. Kim, H. Choi, S.-W. Cho, Y. Kim, J. Kim, G. Park, and B. Lee, “Three-dimensional integral display using plastic optical fibers,” Appl. Opt. 46, 7149–7154 (2007). [CrossRef]
  68. Y. Kim, J. Kim, Y. Kim, H. Choi, J.-H. Jung, and B. Lee, “Thin-type integral imaging method with an organic light emitting diode panel,” Appl. Opt. 47, 4927–4934 (2008). [CrossRef]
  69. J.-H. Jung, Y. Kim, Y. Kim, J. Kim, K. Hong, and B. Lee, “Integral imaging system using an electroluminescent film backlight for three-dimensional–two-dimensional convertibility and a curved structure,” Appl. Opt. 48, 998–1007 (2009). [CrossRef]
  70. H. Choi, J. Kim, S.-W. Cho, Y. Kim, J. B. Park, and B. Lee, “Three-dimensional–two-dimensional mixed display system using integral imaging with an active pinhole array on a liquid crystal panel,” Appl. Opt. 47, 2207–2214 (2008). [CrossRef]
  71. D. Gabor, “A new microscopic principle,” Nature 161, 777–778 (1948). [CrossRef]
  72. E. N. Leith and J. Upatnieks, “Reconstructed wavefronts and communication theory,” J. Opt. Soc. Am. 52, 1123–1130 (1962). [CrossRef]
  73. Y. N. Denisyuk, “Photographic reconstruction of the optical properties of an object in its own scattered field,” Sov. Phys. Dokl. 7, 543 (1962).
  74. G. Lippmann, “La photographie des couleurs,” C.R. Hebd. Seances Acad. Sci. 112, 274–275 (1891).
  75. A. W. Lohmann and D. Paris, “Binary Fraunhofer holograms generated by computer,” Appl. Opt. 6, 1739–1748 (1967). [CrossRef]
  76. J. W. Goodman and R. W. Lawrence, “Digital image formation from electronically detected holograms,” Appl. Phys. Lett. 11, 77–79 (1967). [CrossRef]
  77. J. Schmit and K. Creath, “Extended averaging technique for derivation of error-compensating algorithms in phase-shifting interferometry,” Appl. Opt. 34, 3610–3619 (1995). [CrossRef]
  78. I. Yamaguchi and T. Zhang, “Phase-shifting digital holography,” Opt. Lett. 22, 1268–1270 (1997). [CrossRef]
  79. J. Millerd, N. Brock, J. Hayes, M. North-Morris, M. Novak, and J. C. Wyant, “Pixelated phase-mask dynamic interferometer,” Proc. SPIE 5531, 304–314 (2004). [CrossRef]
  80. J. W. Goodman, Introduction to Fourier Optics, 3rd ed.(Roberts, 2004).
  81. A. V. Oppenheim and J. S. Lim, “The importance of phase in signals,” Proc. IEEE 69, 529–541 (1981). [CrossRef]
  82. J. Hahn, H. Kim, Y. Lim, G. Park, and B. Lee, “Wide viewing angle dynamic holographic stereogram with a curved array of spatial light modulators,” Opt. Express 16, 12372–12386(2008). [CrossRef]
  83. D. J. Brady, Optical Imaging and Spectroscopy (Wiley, 2009).
  84. L. Onural, F. Yaraş, and H. Kang, “Digital holographic three-dimensional video displays,” Proc. IEEE 99, 576–589 (2011). [CrossRef]
  85. K. Maeno, N. Fukaya, O. Nishikawa, K. Sato, and T. Honda, “Electro-holographic display using 15 mega pixels LCD,” Proc. SPIE 2652, 15–23 (1996). [CrossRef]
  86. J. W. Goodman, Speckle Phenomena in Optics: Theory and Applications (Roberts, 2007).
  87. P. J. van Heerden, “A new optical method of storing and retrieving information,” Appl. Opt. 2, 387–392 (1963). [CrossRef]
  88. N. Abramson, “Light-in-flight recording: high-speed holographic motion pictures of ultrafast phenomena,” Appl. Opt. 22, 215–232 (1983). [CrossRef]
  89. J. R. Fienup and J. J. Miller, “Aberration correction by maximizing generalized sharpness metrics,” J. Opt. Soc. Am. A 20, 609–620 (2003). [CrossRef]
  90. M. Stanley, R. W. Bannister, C. D. Cameron, S. D. Coomber, I. G. Cresswell, J. R. Hughes, V. Hui, P. O. Jackson, K. A. Milham, R. J. Miller, D. A. Payne, J. Quarrel, D. C. Scattergood, A. P. Smith, M. A. Smith, D. L. Tipton, P. J. Watson, P. J. Webber, and C. W. Slinger, “100 mega-pixel computer generated holographic images from active tiling--a dynamic and scalable electro-optic modulator system,” Proc. SPIE 5005, 247–258 (2003). [CrossRef]
  91. R. Haussler, S. Reichelt, N. Leister, E. Zschau, R. Missbach, and A. Schwerdtner, “Large real-time holographic displays: from prototypes to a consumer product,” Proc. SPIE 7237, 72370S (2009). [CrossRef]
  92. Y. Takaki and M. Yokouchi, “Speckle-free and grayscale hologram reconstruction using time-multiplexing technique,” Opt. Express 19, 7567–7579 (2011). [CrossRef]
  93. I. Yamaguchi and T. Zhang, “Phase-shifting digital holography,” Opt. Lett. 22, 1268–1270 (1997). [CrossRef]
  94. N. T. Shaked, B. Katz, and J. Rosen, “Review of three-dimensional holographic imaging by multiple-viewpoint-projection based methods,” Appl. Opt. 48, H120–H136(2009). [CrossRef]
  95. J.-H. Park, M.-S. Kim, G. Baasantseren, and N. Kim, “Fresnel and Fourier hologram generation using orthographic projection images,” Opt. Express 17, 6320–6334 (2009). [CrossRef]
  96. N. Chen, J.-H. Park, and N. Kim, “Parameter analysis of integral Fourier hologram and its resolution enhancement,” Opt. Express 18, 2152–2167 (2010). [CrossRef]
  97. H. Kim, J. Hahn, and B. Lee, “Mathematical modeling of triangle-mesh-modeled three-dimensional surface objects for digital holography,” Appl. Opt. 47, D117–D127 (2008). [CrossRef]
  98. F. Zhou, H. B.-L. Duh, and M. Billinghurst, “Trends in augmented reality tracking, interaction and display: a review of ten years of ISMAR,” in Proceedings of 7th IEEE/ACM International Symposium (IEEE, 2008), pp. 193–202.
  99. D. W. F. van Krevelen and R. Poelman, “A survey of augmented reality technologies, applications and limitations,” Int. J. Virtual Reality 9, 1–20 (2010).
  100. O. Cakmakci and J. Rolland, “Head-worn displays: a review,” J. Disp. Technol. 2, 199–216 (2006). [CrossRef]
  101. H. Morishima, T. Akiyama, N. Nanba, and T. Tanaka, “The design of off-axial optical system consisting of aspherical mirrors without rotational symmetry,” in 20th Optical Symposium, Extended Abstracts (Optical Society of Japan, 1995), Vol.  21, pp. 53–56.
  102. K. Inoguchi, H. Morishima, N. Nanaba, S. Takeshita, and Y. Yamazaki, “Fabrication and evaluation of HMD optical system consisting of aspherical mirrors without rotation symmetry,” in Japan Optics’95, Extended Abstracts (Optical Society of Japan, 1995), pp. 19–20.
  103. D. Cheng, Y. Wang, H. Hua, and M. M. Talha, “Design of an optical see-through head-mounted display with a low f-number and large field of view using a freeform prism,” Appl. Opt. 48, 2655–2668 (2009). [CrossRef]
  104. D. Cheng, Y. Wang, H. Hua, and J. Sasian, “Design of a wide-angle, lightweight head-mounted display using free-form optics tiling,” Opt. Lett. 36, 2098–2100 (2011). [CrossRef]
  105. Z. Zheng, X. Liu, H. Li, and L. Xu, “Design and fabrication of an off-axis see-through head-mounted display with an x–y polynomial surface,” Appl. Opt. 49, 3661–3668 (2010). [CrossRef]
  106. E. W. Tatham, “Technical opinion: getting the best of both real and virtual worlds,” Commun. ACM 42, 96–98(1999). [CrossRef]
  107. O. Cakmakci, Y. Ha, and J. P. Rolland, “A compact optical see-through head-worn display with occlusion support,” in Proceedings of the 3rd IEEE/ACM International Symposium on Mixed and Augmented Reality (IEEE/ACM, 2004), pp. 16–25.
  108. K. Kiyokawa, Y. Kurata, and H. Ohno, “An optical see-through display for mutual occlusion with a real-time stereo vision system,” Comput. Graph. Forum 25, 765–779(2001).
  109. K. Kiyokawa, Y. Kurata, and H. Ohno, “Occlusive optical see-through displays in a collaborative setup,” in Proceedings of the ACM SIGGRAPH (ACM2002), p. 74.
  110. K. Kiyokawa, M. Billinghurst, S. E. Hayes, A. Gupta, Y. Sannohe, and H. Kato, “Communications behaviors of co-located users in collaborative AR interfaces,” in Proceedings of the IEEE/ACM International Symposium on Mixed and Augmented Reality (IEEE/ACM2002), pp. 139–148.
  111. K. Kiyokawa, M. Billinghurst, B. Campbell, and E. Woods, “An occlusion-capable optical see-through head mount display for supporting co-located collaboration,” in Proceedings of the 2nd IEEE/ACM International Symposium on Mixed and Augmented Reality (IEEE/ACM2003), pp. 133–141.
  112. S. Shiwa, K. Omura, and F. Kishino, “Proposal for a 3-D display with accommodative compensation: 3-DDAC,” J. Soc. Inf. Disp. 4, 255–261 (1996). [CrossRef]
  113. T. Shibata, T. Kawai, K. Ohta, M. Otsuki, N. Miyake, Y. Yoshihara, and T. Iwasaki, “Stereoscopic 3-D display with optical correction for the reduction of the discrepancy between accommodation and convergence,” J. Soc. Inf. Disp. 13, 665–671 (2005). [CrossRef]
  114. S. C. McQuaide, E. J. Seibel, J. P. Kelly, B. T. Schowengerdt, and T. A. A. Furness, “A retinal scanning display system that produces multiple focal planes with a deformable membrane mirror,” Displays 24, 65–72 (2003). [CrossRef]
  115. S. Liu, H. Hua, and D. Cheng, “A novel prototype for an optical see-through head-mounted display with addressable focus cues,” IEEE Trans. Vis. Comput. Graph. 16, 381–393(2010). [CrossRef]
  116. A. Olwal and T. Höllerer, “POLAR: portable, optical see-through, low-cost augmented reality,” in Proceedings of the ACM Symposium on Virtual Reality Software and Technology (ACM, 2005), pp. 227–230.
  117. W. Wu, F. Blaicher, J. Yang, T. Seder, and D. Cui, “A prototype of landmark-based car navigation using a full-windshield head-up display system,” in Proceedings of the 2009 Workshop on Ambient Media Computing (ACM2009), pp. 21–28.
  118. A. Sato, I. Kitahara, K. Yoshinari, and O. Yuichi, “Visual navigation system on windshield head-up display,” in Proceedings of 13th World Congress & Exhibition on Intelligent Transport Systems and Services (Brintex, 2006).
  119. K. Palovuori and I. Rakkolainen, “Method and apparatus for forming a projection screen or a projection volume,” U.S. patent 6,819,487 (16 November 2004).
  120. S. Eitoku, K. Nishimura, T. Tanikawa, and M. Hirose, “Study on design of controllable particle display using water drops suitable for light environment,” in Proceeding of the ACM Symposium on Virtual Reality Software and Technology (ACM, 2009), pp. 23–26.
  121. A. Olwal, S. DiVerdi, N. Candussi, I. Rakkolainen, and T. Höllerer, “An immaterial, dual-sided display system with 3D interaction,” in Proceedings of the IEEE Conference on Virtual Reality (IEEE, 2006), pp. 279–280.
  122. S. DiVerdi, I. Rakkolainen, T. Höllerer, and A. Olwal, “A novel walk-through 3D display,” Proc. SPIE 6055, 605519 (2006). [CrossRef]
  123. Y. Takaki, Y. Urano, S. Kashiwada, H. Ando, and K. Nakamura, “Super multi-view windshield display for long-distance image information presentation,” Opt. Express 19, 704–716 (2011). [CrossRef]
  124. Y. Takaki and N. Nago, “Multi-projection of lenticular displays to construct a 256-view super multi-view display,” Opt. Express 18, 8824–8835 (2010). [CrossRef]
  125. C. Lee, S. DiVerdi, and T. Höllerer, “Depth-fused 3-D imagery on an immaterial display,” IEEE Trans. Vis. Comput. Graph. 15, 20–32 (2009). [CrossRef]
  126. S. Suyama, Y. Ishigure, H. Takada, K. Nakazawa, J. Hosohata, Y. Takao, and T. Fujikao, “Apparent 3-D image perceived from luminance-modulated two 2-D images displayed at different depths,” Vision Res. 44, 785–793 (2004). [CrossRef]
  127. Y. Ishigure, S. Suyama, H. Takada, K. Nakazawa, J. Hosohata, Y. Takao, and T. Fujikado, “Evaluation of visual fatigue relative in the viewing of a depth-fused 3D display and 2D display,” in Proceedings of International Display Workshops (Society for Information Display. 2004), pp. 1627–1630.
  128. P. C. Barnum, S. G. Narasimhan, and T. Kanade, “A multi-layered display with water drops,” ACM Trans. Graph. 29, 76 (2010). [CrossRef]
  129. I. Kasai, Y. Tanijiri, T. Endo, and H. Ueda, “A practical see-through head mounted display using a holographic optical element,” Opt. Rev. 8, 241–244 (2001). [CrossRef]
  130. A. Olwal, J. Gustafsson, and C. Lindfors, “Spatial augmented reality on industrial CNC-machines,” Proc. SPIE 6804, 680409 (2008). [CrossRef]
  131. K. Sakamoto, M. Okamoto, H. Ueda, H. Takahashi, and E. Shimizu, “Real-time 3D color display using a holographic optical element,” Proc. SPIE 2652, 124–131 (1996). [CrossRef]
  132. K. Sakamoto, H. Takahashi, E. Shimizu, H. Ueda, K. Tanaka, and M. Okamoto, “New approach to the real-time 3D display using a holographic optical element,” Proc. SPIE 3011, 36–44 (1997). [CrossRef]
  133. R. Kishigami, H. Takahashi, and E. Shimizu, “Real-time color three-dimensional display system using holographic optical elements,” Proc. SPIE 4296, 102–107 (2001). [CrossRef]
  134. H. Takahashi, H. Fujinami, and K. Yamada, “Wide-viewing-angle three-dimensional display system using HOE lens array,” Proc. SPIE 6055, 60551C (2006). [CrossRef]
  135. J. Hong, Y. Kim, S. Park, J.-H. Hong, S.-W. Min, S.-D. Lee, and B. Lee, “3D/2D convertible projection-type integral imaging using concave half mirror array,” Opt. Express 18, 20628–20637 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited