OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 50, Iss. 35 — Dec. 10, 2011
  • pp: 6440–6445

Dual-medium quantitative measurement simulation on cells

Yawei Wang, Weifeng Jin, and Naifei Ren  »View Author Affiliations


Applied Optics, Vol. 50, Issue 35, pp. 6440-6445 (2011)
http://dx.doi.org/10.1364/AO.50.006440


View Full Text Article

Enhanced HTML    Acrobat PDF (702 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

For research on inhomogeneous cells, we present a simulation method called the dual-medium quantitative (DMQ) measurement simulation method, which is realized by combining phase-shifting digital holography with DMQ analysis. The reliability of this method is confirmed by comparing the simulated phase map with the experimental one by the Hilbert phase microscope [ J. Phys. Chem. A 113, 13327 (2009)], and its ability for studying inhomogeneous cells is demonstrated with measurements of a simulated HeLa cell. The average deviation and the relative deviation of physical thickness and axially averaged refractive index are 0.0339 μm , 0.69% and 0.0013, 0.094%, respectively. This approach can provide good guidance for experimental research on inhomogeneous cells.

© 2011 Optical Society of America

OCIS Codes
(120.2880) Instrumentation, measurement, and metrology : Holographic interferometry
(120.5050) Instrumentation, measurement, and metrology : Phase measurement
(120.6650) Instrumentation, measurement, and metrology : Surface measurements, figure
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(090.1995) Holography : Digital holography

ToC Category:
Holography

History
Original Manuscript: June 2, 2011
Revised Manuscript: August 15, 2011
Manuscript Accepted: August 16, 2011
Published: December 2, 2011

Virtual Issues
Vol. 7, Iss. 2 Virtual Journal for Biomedical Optics

Citation
Yawei Wang, Weifeng Jin, and Naifei Ren, "Dual-medium quantitative measurement simulation on cells," Appl. Opt. 50, 6440-6445 (2011)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-50-35-6440


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. G. A. Dunn, D. Zicha, and P. E. Fraylich, “Rapid, microtubule-dependent fluctuations of the cell margin,” J. Cell. Sci. 110, 3091–3098 (1997).
  2. D. Zicha, E. Genot, G. A. Dunn, and I. M. Kramer, “TGFbeta1 induces a cell-cycle-dependent increase in motility of epithelial cells,” J. Cell. Sci. 112, 447–454 (1999). [PubMed]
  3. G. A. Dunn and D. Zicha, “Dynamics of fibroblast spreading,” J. Cell. Sci. 108, 1239–1249 (1995). [PubMed]
  4. C. L. Curl, T. Harris, P. J. Harris, B. E. Allman, C. J. Bellair, A. G. Stewart, and L. M. D. Delbridge, “Quantitative phase microscopy: a new tool for measurement of cell culture growth and confluency in situ,” Pflugers Arch. Eur. J. Physiol. 448, 462–468 (2004). [CrossRef]
  5. T. Zhang and I. Yamaguchi, “Three-dimensional microscopy with phase-shifting digital holography,” Opt. Lett. 23, 1221–1223 (1998). [CrossRef]
  6. P. Marquet, B. Rappaz, P. J. Magistretti, E. Cuche, Y. Emery, T. Colomb, and C. Depeursinge, “Digital holographic microscopy: a noninvasive contrast imaging technique allowing quantitative visualization of living cells with subwavelength axial accuracy,” Opt. Lett. 30, 468–470 (2005). [CrossRef] [PubMed]
  7. K. J. Chalut, W. J. Brown, and A. Wax, “Quantitative phase microscopy with asynchronous digital holography,” Opt. Express 15, 3047–3052 (2007). [CrossRef] [PubMed]
  8. T. Ikeda, G. Popescu, R. R. Dasari, and M. S. Feld, “Hilbert phase microscopy for investigating fast dynamics in transparent systems,” Opt. Lett. 30, 1165–1167 (2005). [CrossRef] [PubMed]
  9. B. Rappaz, A. Barbul, A. Hoffmann, D. Boss, R. Korenstein, C. Depeursinge, P. J. Magistretti, and P. Marquet, “Spatial analysis of erythrocyte membrane fluctuations by digital holographic microscopy,” Blood Cells Mol. Dis. 42, 228–232 (2009). [CrossRef] [PubMed]
  10. I. Bernhardt, L. Ivanova, P. Langehanenberg, B. Kemper, and G. von Bally, “Application of digital holographic microscopy to investigate the sedimentation of intact red blood cells and their interaction with artificial surfaces,” Bioelectrochem. Bioenerg. 73, 92–96 (2008). [CrossRef]
  11. S. Grilli, P. Ferraro, S. De Nicola, A. Finizio, G. Pierattini, and R. Meucci, “Whole optical wavefields reconstruction by digital holography,” Opt. Express 9, 294–302 (2001). [CrossRef] [PubMed]
  12. F. Palacios, D. Palacios, G. Palacios, E. Goncalves, J. L. Valin, L. Sajo-Bohus, and J. Ricardo, “Methods of Fourier optics in digital holographic microscopy,” Opt. Commun. 281, 550–558(2008). [CrossRef]
  13. N. Lue, W. Choi, G. Popescu, Z. Yaqoob, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Live cell refractometry using Hilbert phase microscopy and confocal reflectance microscopy,” J. Phys. Chem. A 113, 13327–13330 (2009). [CrossRef] [PubMed]
  14. Y. Awatsuji, A. Fujii, T. Kubota, and O. Matoba, “Parallel three-step phase-shifting digital holography,” Appl. Opt. 45, 2995–3002 (2006). [CrossRef] [PubMed]
  15. J. Garcia-Sucerquia, W. B. Xu, S. K. Jericho, P. Klages, M. H. Jericho, and H. J. Kreuzer, “Digital in-line holographic microscopy,” Appl. Opt. 45, 836–850 (2006). [CrossRef] [PubMed]
  16. I. Yamaguchi, “Phase-shifting digital holography,” in Digital Holography and Three-Dimensional Display, T.-C.Poon, ed. (Academic, 2006), pp. 145–171. [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited