OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 50, Iss. 35 — Dec. 10, 2011
  • pp: 6468–6475

Design, production, and reverse engineering of two-octave antireflection coatings

Tatiana V. Amotchkina, Michael K. Trubetskov, Vladimir Pervak, and Alexander V. Tikhonravov  »View Author Affiliations


Applied Optics, Vol. 50, Issue 35, pp. 6468-6475 (2011)
http://dx.doi.org/10.1364/AO.50.006468


View Full Text Article

Enhanced HTML    Acrobat PDF (568 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We deal with design and production of optimal two-component antireflection (AR) coatings for an ultra broadband spectral range from 450 nm to 1800 nm . We demonstrate the whole design-production chain including design selection, choosing monitoring technique, coating production, and reverse engineering of the deposited coatings. At each step of this chain we provide thorough analysis on the basis of theoretical results and adequate computational manufacturing experiments. In order to produce the designed AR coatings we use magnetron sputtering deposition technique and accurate time monitoring.

© 2011 Optical Society of America

OCIS Codes
(310.1210) Thin films : Antireflection coatings
(310.1860) Thin films : Deposition and fabrication
(310.4165) Thin films : Multilayer design
(310.5696) Thin films : Refinement and synthesis methods
(310.6805) Thin films : Theory and design

ToC Category:
Thin Films

History
Original Manuscript: July 22, 2011
Revised Manuscript: August 31, 2011
Manuscript Accepted: August 31, 2011
Published: December 2, 2011

Citation
Tatiana V. Amotchkina, Michael K. Trubetskov, Vladimir Pervak, and Alexander V. Tikhonravov, "Design, production, and reverse engineering of two-octave antireflection coatings," Appl. Opt. 50, 6468-6475 (2011)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-50-35-6468


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. O. Stenzel, S. Wilbrandt, and N. Kaiser, “All-oxide broadband antireflection coatings by plasma ion assisted deposition: design, simulation, manufacturing and re-optimization,” Opt. Express 18, 8704–8708 (2010).
  2. H. A. Macleod, Thin Film Optical Filters, 3rd ed. (Institute of Physics, 2001). [CrossRef]
  3. J. Dobrowolski, “Optical properties of films and coatings,” in Optical Society of America’s Handbook of Optics, 3rd ed. (McGraw-Hill, 2010).
  4. J. Dobrowolski, A. V. Tikhonravov, M. K. Trubetskov, B. T. Sullivan, and P. G. Verly, “Optimal single-band normal-incidence antireflection coatings,” Appl. Opt. 35, 644–658(1996). [CrossRef] [PubMed]
  5. J. Dobrowolski, D. Paitras, P. Ma, H. Vakil, and M. Acree, “Toward perfect antireflection coatings: numerical investigation,” Appl. Opt. 41, 3075–3083 (2002). [CrossRef] [PubMed]
  6. U. Schulz, U. Schallenberg, and N. Kaiser, “Symmetrical periods in antireflective coatings for plastic optics,” Appl. Opt. 42, 1346–1351 (2003). [CrossRef] [PubMed]
  7. D. Poitras and J. Dobrowolski, “Toward perfect antireflection coatings. 2. Theory,” Appl. Opt. 43, 1286–1295 (2004). [CrossRef] [PubMed]
  8. J. Dobrowolski, Y. Guo, T. Tiwald, P. Ma, and D. Poitras, “Toward perfect antireflection coatings. experimental results obtained with the use of reststrahlen materials,” Appl. Opt. 45, 1555–1562 (2006). [CrossRef] [PubMed]
  9. U. B. Shallenberg, “Antireflection design concepts with equivalent layers,” Appl. Opt. 45, 1507–1514 (2006). [CrossRef]
  10. A. V. Tikhonravov, M. K. Trubetskov, T. V. Amotchkina, and J. A. Dobrowolski, “Estimation of the average residual reflectance of broadband antireflection coatings,” Appl. Opt. 47, C124–C130 (2007). [CrossRef]
  11. R. R. Willey, “Further guidance for broadband antireflection coating design,” Appl. Opt. 50, C274–C278 (2011). [CrossRef] [PubMed]
  12. T. V. Amotchkina, A. V. Tikhonravov, M. K. Trubetskov, and S. A. Yanshin, “Structural properties of antireflection coatings,” in Optical Interference Coatings, OSA Technical Digest Series (Optical Society of America, 2007), paper WB5.
  13. T. V. Amotchkina, A. V. Tikhonravov, and M. K. Trubetskov, “Estimation for the number of layers of broad band anti-reflection coatings,” Proc. SPIE 7101, 710104 (2008). [CrossRef]
  14. T. V. Amotchkina, “Empirical expression for the minimum residual reflectance of normal- and oblique-incidence antireflection coatings,” Appl. Opt. 47, 3109–3113 (2008). [CrossRef] [PubMed]
  15. U. Schulz, “Wideband antireflection coatings by combining interference multilayers with structured top layers,” Opt. Express 17, 8704–8708 (2009). [CrossRef] [PubMed]
  16. A. V. Tikhonravov, M. K. Trubetskov, T. V. Amotchkina, and V. Pervak, “Estimations of production yields for selection of a practical optimal optical coating design,” Appl. Opt. 50, C141–C147 (2011). [CrossRef] [PubMed]
  17. A. V. Tikhonravov, M. K. Trubetskov, and T. V. Amotchkina, “Computational manufacturing experiments for choosing optimal design and monitoring strategy,” Optical Interference Coatings, OSA Technical Digest Series (Optical Society of America, 2010), paper TuA5.
  18. A. V. Tikhonravov, M. K. Trubetskov, and T. V. Amotchkina, “On the reliability of computational estimations used for choosing the most manufacturable design,” Optical Interference Coatings, OSA Technical Digest Series (Optical Society of America, 2010), paper TuA3.
  19. A. V. Tikhonravov and M. K. Trubetskov, “Computational manufacturing as a bridge between design and production,” Appl. Opt. 44, 6877–6884 (2005). [CrossRef] [PubMed]
  20. T. V. Amotchkina, M. K. Trubetskov, S. Schlichting, H. Ehlers, D. Ristau, and A. V. Tikhonravov, “Comparison of algorithms used for optical characterization of multilayer optical coatings,” Appl. Opt. 50, 3389–3395 (2011). [CrossRef] [PubMed]
  21. Quartz Glass for Optics: Data and Properties, http://heraeus-quarzglas.com.
  22. A. V. Tikhonravov, M. K. Trubetskov, T. V. Amotchkina, and M. A. Kokarev, “Key role of the coating total optical thickness in solving design problems,” Proc. SPIE 5250, 312–321(2004). [CrossRef]
  23. T. V. Amotchkina, “Analytical properties of the spectral characteristics of antireflection coatings,” Moscow University Physics Bulletin 62, 292–295 (2007). [CrossRef]
  24. A. V. Tikhonravov and M. K. Trubetskov, “OptiLayer thin film software,” http://www.optilayer.com.
  25. A. V. Tikhonravov, M. K. Trubetskov, and T. V. Amotchkina, “Investigation of the error self-compensation effect associated with broadband optical monitoring,” Appl. Opt. 50, C111–C116 (2011). [CrossRef] [PubMed]
  26. V. Pervak, A. V. Tikhonravov, M. K. Trubetskov, S. Naumov, F. Krausz, and A. Apolonski, “1.5-octave chirped mirror for pulse compression down to sub-3 fs,” Appl. Phys. B 87, 5–12 (2006). [CrossRef]
  27. V. Pervak, M. K. Trubetskov, and A. V. Tikhonravov, “Robust synthesis of dispersive mirrors,” Opt. Express 19, 2371–2380 (2011). [CrossRef] [PubMed]
  28. V. Pervak, “Recent developments and new ideas in the field of dispersive multilayer optics,” Appl. Opt. 50, C55–C61 (2011). [CrossRef] [PubMed]
  29. D. Ristau, H. Ehlers, T. Gross, and M. Lappschies, “Optical broadband monitoring of conventional and ion processes,” Appl. Opt. 45, 1495–1501 (2006). [CrossRef] [PubMed]
  30. A. V. Tikhonravov, M. K. Trubetskov, T. V. Amotchkina, G. DeBell, V. Pervak, A. K. Sytchkova, M. Grilli, and D. Ristau, “Optical parameters of oxide films typically used in optical coating production,” Appl. Opt. 50, C75–C85 (2011). [CrossRef] [PubMed]
  31. A. N. Tikhonov and V. Y. Arsenin, Solutions of Ill-Posed Problems (Wiley, 1977).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited