OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 50, Iss. 36 — Dec. 20, 2011
  • pp: 6548–6554

Reconfiguration of spectral absorption features using a frequency-chirped laser pulse

Mingzhen Tian, Tiejun Chang, Kristian D. Merkel, and W. Randall, Babbitt  »View Author Affiliations


Applied Optics, Vol. 50, Issue 36, pp. 6548-6554 (2011)
http://dx.doi.org/10.1364/AO.50.006548


View Full Text Article

Enhanced HTML    Acrobat PDF (858 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A technique is proposed to manipulate atomic population in an inhomogeneously broadened medium, which can set an arbitrary absorption spectrum to a uniform transparency (erasure) or to a nearly complete inversion. These reconfigurations of atomic spectral distribution are achieved through excitation of electronic transitions using a laser pulse with chirped frequency, which precisely affects selected spectral regions while leaving the rest of the spectrum unperturbed. An erasure operation sets the final atomic population inversion to zero and the inversion operation flips the population between the ground and the excited states, regardless of the previously existing population distribution. This technique finds important applications both in optical signal processing, where fast, recursive processing and high dynamic range are desirable and in quantum memory and quantum computing, which both require high efficiency and high fidelity in quantum state preparation of atomic ensembles. Proof-of-concept demonstrations were performed in a rare-earth doped crystal.

© 2011 Optical Society of America

OCIS Codes
(020.1670) Atomic and molecular physics : Coherent optical effects
(070.0070) Fourier optics and signal processing : Fourier optics and signal processing
(270.5585) Quantum optics : Quantum information and processing

ToC Category:
Atomic and Molecular Physics

History
Original Manuscript: June 27, 2011
Revised Manuscript: October 14, 2011
Manuscript Accepted: October 15, 2011
Published: December 12, 2011

Citation
Mingzhen Tian, Tiejun Chang, Kristian D. Merkel, and W. Randall, "Reconfiguration of spectral absorption features using a frequency-chirped laser pulse," Appl. Opt. 50, 6548-6554 (2011)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-50-36-6548


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. K. D. Merkel and W. R. Babbitt, “Chirped-pulse programming of optical coherent transient true-time delays,” Opt. Lett. 23, 528–530 (1998). [CrossRef]
  2. R. R. Reibel, M. Tian, Z. W. Barber, and W. R. Babbitt, “Temporally overlapped linear frequency-chirped pulse programming for true-time-delay applications,” Opt. Lett. 27, 494–496 (2002). [CrossRef]
  3. K. D. Merkel, M. R. Krishna, Z. Cole, T. Chang, A. Olson, and W. R. Babbitt, “Multi-Gigahertz radar range processing of baseband and RF carrier modulated signals in Tm:YAG,” J. Lumin. 107, 62–67 (2004). [CrossRef]
  4. B. Braker and K. Wagner, “Wideband range-Doppler processing and beamforming using electro-optic array and spectral hole burning materials,” Appl. Opt. 49, E121–E139 (2010). [CrossRef]
  5. F. Schlottau and K. H. Wagner, “Demonstration of a continuous scanner and time-integrating correlator using spatial-spectral holography,” J. Lumin. 107, 90–102 (2004). [CrossRef]
  6. B. M. Braker, F. Schlottau, and K. Wagner, “Squint-free Fourier-optical RF beamforming using a SHB crystal as an imaging detector,” IEEE J. Sel. Top. Quantum Electron. 14, 952–962 (2008). [CrossRef]
  7. V. Crozatier, G. Gorju, J.-L. Le Gouët, F. Bretenaker, and I. Lorgeré, “Wideband and high-resolution coherent optical transients with a frequency-agile laser oscillator,” Opt. Lett. 31, 3264–3266 (2006).
  8. V. Lavielle, I. Lorgeré, J.-L. Le Gouët, S. Tonda, and D. Dolfi, “Wideband versatile radio-frequency spectrum analyzer,” Opt. Lett. 28, 384–386 (2003). [CrossRef]
  9. F. Schlottau, M. Colice, K. H. Wagner, and W. R. Babbitt, “Spectral hole burning for wideband, high-resolution radio-frequency spectrum analysis,” Opt. Lett. 30, 3003–3005(2005). [CrossRef]
  10. I. Lorgeré, V. Crozatier, G. Gorju, F. Bretenaker, and J.-L. Le Gouët, “Radio-frequency spectrum analyzers based on rare earth ion doped crystals,” Appl. Phys. B 84, 653–657 (2006). [CrossRef]
  11. G. Gorju, A. Chauve, V. Crozatier, I. Lorgeré, J.-L. Le Gouët, and F. Bretenaker, “10 GHz bandwidth rf spectral analyzer with megahertz resolution based on spectral-spatial holography in Tm3+:YAG: Experimental and theoretical study,” J. Opt. Soc. Am. B 24, 457–470 (2007). [CrossRef]
  12. R. R. Reibel, C. Harrington, J. Dahl, C. Ostrander, P. A. Roos, T. Berg, M. R. Krishna, M. A. Neifeld, and R. Wm. Babbitt, “Demonstrations of analog-to-digital conversion using a frequency domain stretched processor,” Opt. Express 17, 11281–11286 (2009). [CrossRef]
  13. V. Lavielle, J.-L. Le Gouët, and D. Ricard, “Persistent spectral hole-burning materials as pulse shapers: Phase analysis of a chirped coherent filter,” J. Opt. Soc. Am. B 20, 585–590 (2003). [CrossRef]
  14. W. R. Babbitt, M. A. Neifeld, and K. D. Merkel, “Broadband analog to digital conversion with spatial-spectral holography,” J. Lumin. 127, 152–157 (2007). [CrossRef]
  15. C. J. Renner, R. R. Reibel, M. Tian, T. Chang, and W. R. Babbitt, “Broadband photonic arbitrary waveform generation based on spatial-spectral holographic materials,” J. Opt. Soc. Am. B 24, 2979 (2007). [CrossRef]
  16. Z. W. Barber, C. Harrington, C. W. Thiel, and Wm. R. Babbitt, “Angle of arrival estimation using spectral interferometry,” J. Lumin. 130, 1614–1618 (2010). [CrossRef]
  17. A. Korpel and M. Chatterjee, “Nonlinear echoes, phase congujation, time reversal, and electronic holography,” Proc. IEEE 69, 1539–1556 (1981). [CrossRef]
  18. N. N. Akhmediev, “Information erasing in the phenomenon of long-lived photon echo,” Opt. Lett. 15, 1035–1037 (1990). [CrossRef]
  19. U. Elman, B. Luo, and S. Kröll, “Influence of laser phase and frequency fluctuations on photon-each data erasure,” J. Opt. Soc. Am. B 13, 1905–1915 (1996). [CrossRef]
  20. E. Kozhekin, K. Mølmer, and E. Polzik, “Quantum memory for light,” Phys. Rev. A 62, 033809 (2000). [CrossRef]
  21. C. Simon, M. Afzelius, J. Appel, A. B. de la Giroday, S. J. Dewhurst, N. Gisin, C. Hu, F. Jelezko, S. Kröll, J. H. Müller, J. Nnn, E. Polzik, J. Rarity, H. de Riedmatten, W. Rosenfeld, A. J. Shields, N. Sköld, R. M. Stevenson, R. Thew, I. Walmsley, M. Weber, H. Weinfurrter, J. Wrachtrup, and R. J. Young, “Quantum Memories, a review based on the European integrated project “qubit applications (QAP)”,” Eur. Phys. J. D 581, 1–22 (2010).
  22. K. Hammerer, A. S. Sørensen, and E. S. Polzik, “Quantum interface between light and atomic ensembles,” Rev. Mod. Phys. 82, 1041–1093 (2010). [CrossRef]
  23. W. Tittel, M. Afzelius, T. Chanelière, R. L. Cone, S. Kröll, S. A. Moiseev, and M. Sellars, “Photon-echo quantum memory in solid state systems,” Laser Photon. Rev. 4, 244–267 (2010). [CrossRef]
  24. L. Rippe, B. Julsgaard, A. Walther, Y. Ying, and S. Kröll, “Experimental quantum-state tomography of a solid-state qubit,” Phys. Rev. A 77, 022307 (2008). [CrossRef]
  25. F. de Seze, F. Dahes, V. Crozatier, I. Lorgeré, F. Bretenaker, and J.-L. Le Gouët, “Coherent driving of Tm3+:YAG ions using a complex hyperbolic secant optical field,” Eur. Phys. J. D 33, 343–355 (2005). [CrossRef]
  26. T. L. Harris, M. Tian, Wm. R. Babbitt, G. W. Burr, J. A. Hoffnagle, and C. M. Jefferson, “Chirped excitation of optically dense inhomogeneously broadened media using Eu3:Y2SiO5,” J. Opt. Soc. Am. B 21, 811–819 (2004). [CrossRef]
  27. T. Chang, M. Tian, Z. W. Barber, and Wm. R. Babbitt, “Numerical modeling of optical coherent transient processes with complex configurations—II. Angled beams with arbitrary phase modulations,” J. Lumin. 107, 138–145 (2004). [CrossRef]
  28. T. Chanelière, J. Ruggiero, M. Bonarota, M. Afzelius, and J.-L. Le Gouët, “Efficient light storage in a crystal using an atomic frequency comb,” New J. Phys. 12, 023025 (2010). [CrossRef]
  29. M. Afzelius, C. Simon, H. de Riedmatten, and N. Gisin, “Multimode quantum memory based on atomic frequency combs,” Phys. Rev. A 79, 052329 (2009). [CrossRef]
  30. N. M. Strickland, P. B. Sellin, Y. Sun, J. L. Carlsten, and R. L. Cone, “Laser frequency stabilization using regenerative spectral hole burning,” Phys. Rev. B 62, 1473–1476 (2000). [CrossRef]
  31. T. Chang, R. K. Mohan, M. Tian, T. L. Harris, Wm. R. Babbitt, and K. D. Merkel, “Frequency- chirped readout of spatial-spectral absorption features,” Phys. Rev. A 70, 063803(2004). [CrossRef]
  32. R. R. Reibel, Z. W. Barber, J. A. Fischer, M. Tian, and W. R. Babbitt, “Broadband demonstrations of true-time delay using linear sideband chirped programming and optical coherent transients,” J. Lumin. 107, 103–113 (2004). [CrossRef]
  33. V. Crozatier, G. Gorju, J.-L. Le Gouët, F. Bretenaker, and I. Lorgeré, “Wideband and high-resolution coherent optical transition with a frequency-agile laser oscillator,” Opt. Lett. 31, 3264–3266 (2006). [CrossRef]
  34. P. Roos, R. R. Reibel, T. Berg, B. Kaylor, Z. W. Barber, and Wm. R. Babbitt, “Ultrabroadeband optical chirp linearization for precision metrology applications,” Opt. Lett. 34, 3692–3694 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 
Fig. 4.
 

Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited