OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 50, Iss. 36 — Dec. 20, 2011
  • pp: 6591–6598

Simple multiscale algorithm for layer detection with lidar

Feiyue Mao, Wei Gong, and Zhongmin Zhu  »View Author Affiliations


Applied Optics, Vol. 50, Issue 36, pp. 6591-6598 (2011)
http://dx.doi.org/10.1364/AO.50.006591


View Full Text Article

Enhanced HTML    Acrobat PDF (863 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Lidar is a powerful active remote sensing device used in the detection of the optical properties of aerosols and clouds. However, there are difficulties in layer detection and classification. Many previous methods are too complex for large dataset analysis or limited to data with too high a signal-to-noise ratio (SNR). In this study, a mechanism of multiscale detection and overdetection rejection is proposed based on a trend index function that we define. Finally, we classify layers based on connected layers employing a quantity known as the threshold of the peak-to-base ratio. We find good consistency between retrieved results employing our method and visual analysis. The testing of synthetic signals shows that our algorithm performs well with SNRs higher than 4. The results demonstrate that our algorithm is simple, practical, and suited to large dataset applications.

© 2011 Optical Society of America

OCIS Codes
(010.1100) Atmospheric and oceanic optics : Aerosol detection
(010.3640) Atmospheric and oceanic optics : Lidar
(290.1090) Scattering : Aerosol and cloud effects
(010.1615) Atmospheric and oceanic optics : Clouds

ToC Category:
Atmospheric and Oceanic Optics

History
Original Manuscript: August 5, 2011
Manuscript Accepted: October 17, 2011
Published: December 15, 2011

Citation
Feiyue Mao, Wei Gong, and Zhongmin Zhu, "Simple multiscale algorithm for layer detection with lidar," Appl. Opt. 50, 6591-6598 (2011)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-50-36-6591


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. K. N. Liou, An Introduction to Atmospheric Radiation(Academic, 2002).
  2. V. Ramanathan, R. D. Cess, E. F. Harrison, P. Minnis, B. R. Barkstrom, E. Ahmad, and D. Hartmann, “Cloud-radiative forcing and climate: results from the Earth Radiation Budget Experiment,” Science 243, 57–63 (1989). [CrossRef] [PubMed]
  3. S.Solomon, D.Qin, M.Manning, Z.Chen, M.Marquis, K.B.Averyt, M.Tignor, and H.L.Miller, eds., IPCC, 2007: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge University, 2007). [PubMed]
  4. G. Ohring, B. Wielicki, R. Spencer, B. Emery, and R. Datla, “Satellite instrument calibration for measuring global climate change,” Bull. Am. Meteor. Soc 86, 1303–1313 (2005). [CrossRef]
  5. Q. Min, P. Minnis, and M. M. Khaiyer, “Comparison of cirrus optical depths derived from GOES 8 and surface measurements,” J. Geophys. Res. 109, D15207 (2004). [CrossRef]
  6. V. A. Kovalev and W. E. Eichinger, Elastic Lidar: Theory, Practice, and Analysis Methods (Wiley-Interscience, 2004). [CrossRef]
  7. E. J. Welton, J. R. Campbell, J. D. Spinhirne, and S. Stanley, “Global monitoring of clouds and aerosols using a network of micro-pulse lidar systems,” Proc. SPIE 4153, 151–158 (2001). [CrossRef]
  8. D. M. Winker, J. R. Pelon, and M. P. McCormick, “The CALIPSO mission: spaceborne lidar for observation of aerosols and clouds,” Proc. SPIE 4893, 1–11 (2003). [CrossRef]
  9. W. Gong, F. Mao, and S. Song, “Signal simplification and cloud detection with an improved Douglas–Peucker algorithm for single-channel lidar,” Meteorol. Atmos. Phys. 113, 89–97(2011). [CrossRef]
  10. V. A. Kovalev, J. Newton, C. Wold, and W. M. Hao, “Simple algorithm to determine the near-edge smoke boundaries with scanning lidar,” Appl. Opt. 44, 1761–1768 (2005). [CrossRef] [PubMed]
  11. D. M. Winker and M. A. Vaughan, “Vertical distribution of clouds over Hampton, Virginia observed by lidar under the ECLIPS and FIRE ETO programs,” Atmos. Res. 34, 117–133(1994). [CrossRef]
  12. S. R. Pal, W. Steinbrecht, and A. I. Carswell, “Automated method for lidar determination of cloud-base height and vertical extent,” Appl. Opt. 31, 1488–1494 (1992). [CrossRef] [PubMed]
  13. Z. Wang and K. Sassen, “Cloud type and macrophysical property retrieval using multiple remote sensors,” J. Appl. Meteorol. 40, 1665–1682 (2001). [CrossRef]
  14. F. Mao, W. Gong, J. Li, and J. Zhang, “Cloud detection and coefficient retrieve based on improved differential zero-crossing method for Mie lidar,” Acta Opt. Sin. 30, 3097–3102(2010). [CrossRef]
  15. A. Shimizu, N. Sugimoto, I. Matsui, K. Arao, I. Uno, T. Murayama, N. Kagawa, K. Aoki, A. Uchiyama, and A. Yamazaki, “Continuous observations of Asian dust and other aerosols by polarization lidars in China and Japan during ACE-Asia,” J. Geophys. Res. 109, D19S17 (2004). [CrossRef]
  16. A. Ben-David, C. E. Davidson, and R. G. Vanderbeek, “Lidar detection algorithm for time and range anomalies,” Appl. Opt. 46, 7275–7288 (2007). [CrossRef] [PubMed]
  17. S. Y. BenZvi, R. Cester, M. Chiosso, B. M. Connolly, A. Filipi, B. Garcia, A. Grillo, F. Guarino, M. Horvat, and M. Iarlori, “The lidar system of the Pierre Auger Observatory,” Nucl. Inst. Methods Phys. Res. A 574, 171–184 (2007). [CrossRef]
  18. Y. Morille, M. Haeffelin, P. Drobinski, and J. Pelon, “STRAT: an automated algorithm to retrieve the vertical structure of the atmosphere from single-channel lidar data,” J. Atmos. Ocean. Technol. 24, 761–775 (2007). [CrossRef]
  19. W. Gong, F. Mao, and J. Li, “OFLID: simple method of overlap factor calculation with laser intensity distribution for biaxial lidar,” Opt. Commun. 284, 2966–2971 (2011). [CrossRef]
  20. F. Rocadenbosch, M. Sicard, M. N. M. Reba, and S. Tomas, “Morphological tools for range-interval segmentation of elastic lidar signals,” in IEEE International Geoscience and Remote Sensing Symposium (IGARSS) (IEEE, 2007), pp. 4372–4375. [CrossRef]
  21. D. E. Day and W. C. Malm, “Aerosol light scattering measurements as a function of relative humidity: a comparison between measurements made at three different sites,” Atmos. Environ. 35, 5169–5176 (2001). [CrossRef]
  22. R.M.Haralick and L.G.Shapiro, eds., Computer and Robot Vision, Vol.  I (Addison-Wesley, 1992), pp. 28–48.
  23. W. Gong, J. Li, F. Mao, and J. Zhang, “Comparison of simultaneous signals obtained from a dual-field-of-view lidar and its application to noise reduction based on empirical mode decomposition,” Chin. Opt. Lett. 9, 050101 (2011). [CrossRef]
  24. Y. Ma, W. Gong, P. Wang, and X. Hu, “New dust aerosol identification method for spaceborne lidar measurements,” J. Quant. Spectrosc. Radiat. Trans. 112, 338–345 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited