OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 50, Iss. 36 — Dec. 20, 2011
  • pp: 6652–6656

Geometrically enhanced morphology-dependent resonances of a dielectric sphere

Abdullah Demir, Emre Yüce, Ali Serpengüzel, and James A. Lock  »View Author Affiliations


Applied Optics, Vol. 50, Issue 36, pp. 6652-6656 (2011)
http://dx.doi.org/10.1364/AO.50.006652


View Full Text Article

Enhanced HTML    Acrobat PDF (473 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The effect that geometrical resonances of orbiting internally reflecting rays have on the morphology-dependent resonances of microspheres is investigated heuristically and numerically using generalized Lorenz–Mie theory. Angularly resolved off-axis Gaussian beam elastic scattering spectra are presented. The results obtained show that the elastic scattering intensity of morphology-dependent resonances is noticeably enhanced in the vicinity of the geometrical resonance scattering angles.

© 2011 Optical Society of America

OCIS Codes
(140.4780) Lasers and laser optics : Optical resonators
(290.4020) Scattering : Mie theory
(140.3945) Lasers and laser optics : Microcavities

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: June 27, 2011
Revised Manuscript: August 14, 2011
Manuscript Accepted: August 16, 2011
Published: December 16, 2011

Virtual Issues
Vol. 7, Iss. 2 Virtual Journal for Biomedical Optics

Citation
Abdullah Demir, Emre Yüce, Ali Serpengüzel, and James A. Lock, "Geometrically enhanced morphology-dependent resonances of a dielectric sphere," Appl. Opt. 50, 6652-6656 (2011)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-50-36-6652


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Serpengüzel and A. W. Poon, eds., Optical Processes in Microparticles and Nanostructures (World Scientific, 2011).
  2. A. A. Savchenkov, V. S. Ilchenko, A. B. Matsko, and L. Maleki, “Kilohertz optical resonances in dielectric crystal cavities,” Phys. Rev. A 70, 051804(R) (2004). [CrossRef]
  3. M. Cai, O. Painter, and K. J. Vahala, “Fiber-coupled microsphere laser,” Opt. Lett. 25, 1430–1432 (2000). [CrossRef]
  4. T. Bilici, S. Işçi, A. Kurt, and A. Serpengüzel, “Microsphere-based channel dropping filter with an integrated photodetector,” IEEE Photon. Technol. Lett. 16, 476–478 (2004). [CrossRef]
  5. H. C. Tapalian, J. P. Laine, and P. A. Lane, “Thermooptical switches using coated microsphere resonators,” IEEE Photon. Technol. Lett. 14, 1118–1120 (2002). [CrossRef]
  6. I. Teraoka, S. Arnold, and F. Vollmer, “Perturbation approach to resonance shifts of whispering-gallery modes in a dielectric microsphere as a probe of a surrounding medium,” J. Opt. Soc. Am. B 20, 1937–1946 (2003). [CrossRef]
  7. A. Demir and A. Serpengüzel, “Silica microspheres for biomolecular detection applications,” IEE Proc. Nanobiotechnol. 152, 105–108 (2005). [CrossRef]
  8. A. B. Matsko, A. A. Savchenkov, V. S. Ilchenko, and L. Maleki, “Optical gyroscope with whispering gallery mode optical cavities,” Opt. Commun. 233, 107–112 (2004). [CrossRef]
  9. R. K. Chang and A. J. Campillo, eds., Optical Processes in Microcavities (World Scientific, 1996).
  10. G. Gilardi, D. Donisi, A. Serpengüzel, and R. Beccherelli, “Liquid-crystal tunable filter based on sapphire microspheres,” Opt. Lett. 34, 3253–3255 (2009). [CrossRef]
  11. S. M. Spillane, J. T. Kippenberg, and K. J. Vahala, “Ultralow threshold Raman laser using a spherical dielectric microcavity,” Nature 415, 621–623 (2002). [CrossRef]
  12. Y. O. Yilmaz, A. Demir, A. Kurt, and A. Serpengüzel, “Optical channel dropping with a silicon microsphere,” IEEE Photon. Technol. Lett. 17, 1662–1664 (2005). [CrossRef]
  13. A. Serpengüzel, A. Kurt, and U. K. Ayaz, “Silicon microspheres for electronic and photonic integration,” Photon. Nanostr. Fundam. Appl. 6, 179–182 (2008). [CrossRef]
  14. A. Serpengüzel and A. Demir, “Silicon microspheres for near-IR communication applications,” Semicond. Sci. Technol. 23, 064009 (2008). [CrossRef]
  15. E. Yüce, O. Gürlü, and A. Serpengüzel, “Optical modulation with silicon microspheres,” IEEE Photon. Technol. Lett. 21, 1481–1483 (2009). [CrossRef]
  16. F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: label-free detection down to single molecules,” Nat. Methods 5, 591–596 (2008). [CrossRef]
  17. S. Arnold, M. Khoshsima, I. Teraoka, S. Holler, and F. Vollmer, “Shift of whispering-gallery modes in microspheres by protein adsorption,” Opt. Lett. 28, 272–274 (2003). [CrossRef]
  18. H. C. Ren, F. Vollmer, S. Arnold, and A. Libchaber, “High-Q microsphere biosensor—analysis for adsorption of rodlike bacteria,” Opt. Express 15, 17410–17423 (2007). [CrossRef]
  19. O. Gaathon, J. Culic-Viskota, M. Mihnev, I. Teraoka, and S. Arnold, “Enhancing sensitivity of a whispering gallery mode biosensor by subwavelength confinement,” Appl. Phys. Lett. 89, 223901 (2006). [CrossRef]
  20. N. Lin, L. Jiang, S. Wang, L. Yuan, H. Xiao, Y. Lu, and H. Tsai, “Ultrasensitive chemical sensors based on whispering gallery modes in a microsphere coated with zeolite,” Appl. Opt. 49, 6463–6471 (2010). [CrossRef]
  21. J. A. Lock, S. Y. Wrbanek, and K. E. Weiland, “Scattering of a tightly focused beam by optically trapped particle,” Appl. Opt. 45, 3634–3645 (2006). [CrossRef]
  22. G. Gouesbet, “Generalized Lorenz–Mie theories, the third decade: a perspective,” J. Quant. Spectrosc. Radiat. Transfer 110, 1223–1238 (2009). [CrossRef]
  23. J. A. Lock and G. Gouesbet, “Generalized Lorenz–Mie theory and applications,” J. Quant. Spectrosc. Radiat. Transfer 110, 800–807 (2009). [CrossRef]
  24. G. Gouesbet, J. A. Lock, and G. Gréhan, “Generalized Lorenz–Mie theories and description of electromagnetic arbitrary shaped beams: localized approximations and localized beam models, a review,” J. Quant. Spectrosc. Radiat. Transfer 112, 1–27 (2011). [CrossRef]
  25. G. Griffel, S. Arnold, D. Taskent, A. Serpengüzel, J. Connolly, and N. Morris, “Morphology-dependent resonances of a microsphere-optical fiber system,” Opt. Lett. 21, 695–697 (1996). [CrossRef]
  26. J. A. Lock, “Excitation efficiency of a morphology-dependent resonance by a focused Gaussian beam,” J. Opt. Soc. Am. A 15, 2986–2994 (1998). [CrossRef]
  27. H.-B. Lin, J. D. Eversole, A. J. Campillo, and J. P. Barton, “Excitation localization principle for spherical cavities,” Opt. Lett. 23, 1921–1923 (1998). [CrossRef]
  28. J. A. Lock, “Excitation of morphology-dependent resonances and van de Hulst’s localization principle,” Opt. Lett. 24, 427–429 (1999). [CrossRef]
  29. A. Braun, C. Kornmessser, and V. Beushausen, “Simultaneous spatial and spectral imaging of lasing droplets,” J. Opt. Soc. Am. A 22, 1772–1779 (2005). [CrossRef]
  30. H. M. Nussenzveig, “High-frequency scattering by a transparent sphere. II. Theory of the rainbow and the glory,” J. Math. Phys. 10, 125–176 (1969). [CrossRef]
  31. H. M. Nussenzveig, “Complex angular momentum theory of the rainbow and the glory,” J. Opt. Soc. Am. 69, 1068–1079 (1979). [CrossRef]
  32. G. Gouesbet, S. Meunier-Guttin-Cluzel, and G. Gréhan, “Periodic orbits in Hamiltonian chaos of the annular billiard,” Phys. Rev. E 65, 016212 (2001). [CrossRef]
  33. J. U. Nöckel and A. D. Stone, “Chaotic light: a theory of asymmetric resonant cavities,” in Optical Processes in Microcavities, R. K. Chang and A. J. Campillo, eds. (World Scientific, 1996), pp. 389–426.
  34. J. A. Lock, “Contribution of high-order rainbows to the scattering of a Gaussian laser beam by a spherical particle,” J. Opt. Soc. Am. A 10, 693–706 (1993). [CrossRef]
  35. J. A. Lock, “Improved Gaussian beam-scattering algorithm,” Appl. Opt. 34, 559–570 (1995). [CrossRef]
  36. C. C. Lam, P. T. Leung, and K. Young, “Explicit asymptotic formulas for the positions, widths, and strengths of resonances in Mie scattering,” J. Opt. Soc. Am. B 9, 1585–1592 (1992). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited