OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 50, Iss. 36 — Dec. 20, 2011
  • pp: 6682–6688

Comparison of quarter-wave retarders over finite spectral and angular bandwidths for infrared polarimetric-imaging applications

Samuel L. Wadsworth and Glenn D. Boreman  »View Author Affiliations

Applied Optics, Vol. 50, Issue 36, pp. 6682-6688 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (676 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We compare three technological approaches for quarter-wave retarders within the context of polarimetric-imaging applications in the long-wave infrared (LWIR) spectrum. Performance of a commercial cadmium sulfide (CdS) crystalline waveplate, a multilayer meanderline structure, and a silicon (Si) form-birefringent retarder are evaluated under conditions of 8–12 μm broadband radiation emerging from an F/1 focusing objective. Metrics used for this comparison are the spectrally dependent axial ratio, retardance, and polarization-averaged power transmittance, which are averaged over the angular range of interest. These parameters correspond to the characteristics that would be observed at the focal-plane array (FPA) detector of an LWIR imaging polarimeter.

© 2011 Optical Society of America

OCIS Codes
(120.2130) Instrumentation, measurement, and metrology : Ellipsometry and polarimetry
(120.7000) Instrumentation, measurement, and metrology : Transmission
(230.5440) Optical devices : Polarization-selective devices
(300.6340) Spectroscopy : Spectroscopy, infrared
(110.5405) Imaging systems : Polarimetric imaging

ToC Category:
Instrumentation, Measurement, and Metrology

Original Manuscript: July 7, 2011
Revised Manuscript: August 24, 2011
Manuscript Accepted: September 2, 2011
Published: December 19, 2011

Samuel L. Wadsworth and Glenn D. Boreman, "Comparison of quarter-wave retarders over finite spectral and angular bandwidths for infrared polarimetric-imaging applications," Appl. Opt. 50, 6682-6688 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. T. Carrozi, R. Karlsson, and J. Bergman, “Parameters characterizing electromagnetic wave polarization,” Phys. Rev. E 61, 2024–2028 (2000). [CrossRef]
  2. D. Goldstein, Polarized Light, 2nd ed. (Marcel Dekker, 2003).
  3. R. M. A. Azzam and N. M. Bashara, Ellipsometry and Polarized Light (Elsevier, 1977).
  4. L. Mandel and E. Wolf, Optical Coherence and Quantum Optics, (Cambridge University, 1995).
  5. H. Kikuta, K. Numata, M. Muto, K. Iwata, H. Toyota, K. Moriwaki, T. Yotuya, and H. Sato, “Polarization imaging camera with form birefringent micro-retarder array,” in Frontiers in Optics, Technical Digest (CD) (Optical Society of America, 2003), paper ThRR3.
  6. C. S. L. Chun, “Microscale waveplates for polarimetric infrared imaging,” Proc. SPIE 5074, 286–297 (2003).
  7. S. A. Kemme, A. A. Cruz-Cabrera, R. R. Boye, T. Carter, S. Samora, C. Alford, J. R. Wendt, G. A. Vawter, and J. L. Smith, “Micropolarizing device for long wavelength infrared polarization imaging,” Sandia Report SAND2006-6889 (Sandia National Laboratories, 2006).
  8. R. B. Boye, S. A. Kemme, J. R. Wendt, A. A. Cruz-Cabrera, G. A. Vawter, C. R. Alford, T. R. Carter, and S. Samora, “Fabrication and measurement of wideband achromatic waveplates for the mid-infrared region using subwavelength features,” J. Microlith. Microfab. Microsyst. 5, 043007 (2006).
  9. E. L. Geiszelmann, S. F. Jacobs, and H. E. Morrow, “Simple quartz birefringent quarter-wave plate for use at 3.39 μm,” J. Opt. Soc. Am. 59, 1381–1383 (1969). [CrossRef]
  10. M. Fox, Optical Properties of Solids (Oxford University, 2001).
  11. P. D. Hale and G. W. Gay, “Stability of birefringent linear retarders,” Appl. Opt. 27, 5146–5153 (1988).
  12. S. L. Wadsworth and G. D. Boreman, “Analysis of throughput for multilayer infrared meanderline waveplates,” Opt. Express 18, 13345–13360 (2010). [CrossRef]
  13. S. L. Wadsworth and G. D. Boreman, “Broadband infrared meanderline reflective quarter-wave plate,” Opt. Express 19, 10604–10612 (2011). [CrossRef]
  14. J. S. Tharp, J. Alda, and G. D. Boreman, “Off-axis behavior of an infrared meander-line waveplate,” Opt. Lett. 32, 2852–2854 (2007). [CrossRef]
  15. J. S. Tharp, B. A. Lail, B. A. Munk, and G. D. Boreman, “Design and demonstration of an infrared meanderline phase retarder,” IEEE Trans. Antennas Propag. 55, 2983–2988 (2007).
  16. D. L. Brundrett, E. N. Glytsis, and T. K. Gaylord, “Subwavelength transmission grating retarders for use at 10.6 μm,” Appl. Opt. 35, 6195–6202 (1996).
  17. F. Xu, R.-C. Tyan, P.-C. Sun, Y. Fainman, C.-C. Cheng, and A. Scherer, “Fabrication, modeling, and characterization of form-birefringent nanostructures,” Opt. Lett. 20, 2457–2459 (1995). [CrossRef]
  18. G. P. Nordin and P. C. Deguzman, “Broadband form birefringent quarter-wave plate for the mid-infrared wavelength region,” Opt. Express 5, 163–168 (1999). [CrossRef]
  19. R. T. Remski, “Analysis of photonic bandgap surfaces using Ansoft HFSS,” Microwave Journal 43, 51–68 (2000).
  20. J.-C. Zhang, Y.-Z. Yin, and J.-P. Ma, “Multifunctional meander line polarizer,” Prog. Elect. Research Lett. 6, 55–60 (2009).
  21. W. R. Folks, J. C. Ginn, D. J. Shelton, J. S. Tharp, and G. D. Boreman, “Spectroscopic ellipsometry of materials for infrared micro-device fabrication,” Phys. Status Solidi C 5, 1113–1116 (2008).
  22. D. F. Bezuidenhout, K. D. Clarke, and R. Pretorius, “The optical properties of YF3 films,” Thin Solid Films 155, 17–30 (1987). [CrossRef]
  23. H. A. Macleod, Thin-Film Optical Filters (Elsevier, 1969).
  24. J. E. Raynolds, B. A. Munk, J. B. Pryor, and R. J. Marhefka, “Ohmic loss in frequency-selective surfaces,” J. Appl. Phys. 93, 5346–5358 (2003).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited