OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 50, Iss. 36 — Dec. 20, 2011
  • pp: 6697–6707

Simultaneous measurements of multiple flow parameters for scramjet characterization using tunable diode-laser sensors

Fei Li, XiLong Yu, Hongbin Gu, Zhi Li, Yan Zhao, Lin Ma, Lihong Chen, and Xinyu Chang  »View Author Affiliations


Applied Optics, Vol. 50, Issue 36, pp. 6697-6707 (2011)
http://dx.doi.org/10.1364/AO.50.006697


View Full Text Article

Enhanced HTML    Acrobat PDF (1093 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

This paper reports the simultaneous measurements of multiple flow parameters in a scramjet facility operating at a nominal Mach number of 2.5 using a sensing system based on tunable diode-laser absorption spectroscopy (TDLAS). The TDLAS system measures velocity, temperature, and water vapor partial pressure at three different locations of the scramjet: the inlet, the combustion region near the flame stabilization cavity, and the exit of the combustor. These measurements enable the determination of the variation of the Mach number and the combustion mode in the scramjet engine, which are critical for evaluating the combustion efficiency and optimizing engine performance. The results obtained in this work clearly demonstrated the applicability of TDLAS sensors in harsh and high-speed environments. The TDLAS system, due to its unique virtues, is expected to play an important role in the development of scramjet engines.

© 2011 Optical Society of America

OCIS Codes
(120.1740) Instrumentation, measurement, and metrology : Combustion diagnostics
(280.3420) Remote sensing and sensors : Laser sensors
(300.1030) Spectroscopy : Absorption
(300.6260) Spectroscopy : Spectroscopy, diode lasers

ToC Category:
Instrumentation, Measurement, and Metrology

History
Original Manuscript: July 1, 2011
Revised Manuscript: September 25, 2011
Manuscript Accepted: October 3, 2011
Published: December 20, 2011

Citation
Fei Li, XiLong Yu, Hongbin Gu, Zhi Li, Yan Zhao, Lin Ma, Lihong Chen, and Xinyu Chang, "Simultaneous measurements of multiple flow parameters for scramjet characterization using tunable diode-laser sensors," Appl. Opt. 50, 6697-6707 (2011)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-50-36-6697


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. E. T. Curran, “Scramjet engines: the first forty years,” J. Propul. Power 17, 1138–1148 (2001). [CrossRef]
  2. W. H. Heiser and D. T. Pratt, Hypersonic Airbreathing Propulsion, AIAA Education Series (AIAA, 1994).
  3. R. A. Baurle and D. R. Eklund, “Analysis of dual-mode hydrocarbon scramjet operation at Mach 4–6.5,” J. Propul. Power 18, 990–1002 (2002). [CrossRef]
  4. T. Kanda, N. Chinzei, K. Kudo, and A. Murakami, “Dual-mode operations in a scramjet combustor,” J. Propul. Power 20, 760–763 (2004). [CrossRef]
  5. J. C. McDaniel, C. P. Goyne, E. B. Bryner, D. B. Le, C. T. Smith, and R. H. Krauss, “Dual-mode scramjet operation at a Mach 5 flight enthalpy in a clean air test facility,” AIP Conf. Proc. 762, 1277–1282 (2005). [CrossRef]
  6. D. J. Micka and J. F. Driscoll, “Combustion characteristics of a dual-mode scramjet combustor with cavity flameholder,” Proc. Combust. Inst. 32, 2397–2404 (2009). [CrossRef]
  7. T. Mitani and T. Kouchi, “Flame structures and combustion efficiency computed for a Mach 6 scramjet engine,” Combust. Flame 142, 187–196 (2005). [CrossRef]
  8. M. P. Arroyo, S. Langlois, and R. K. Hanson, “Diode laser absorption technique for simultaneous measurements of multiple gasdynamic parameters in high-speed flows containing water-vapor,” Appl. Opt. 33, 3296–3307 (1994). [CrossRef]
  9. A. Mohamed, B. Rosier, D. Henry, Y. Louvet, and P. L. Varghese, “Tunable diode laser measurements on nitric oxide in a hypersonic wind tunnel,” AIAA J. 34, 494–499 (1996). [CrossRef]
  10. M. G. Allen, “Diode laser absorption sensors for gas-dynamic and combustion flows,” Meas. Sci. Technol. 9, 545–562 (1998). [CrossRef]
  11. B. L. Upschulte, M. F. Miller, and M. G. Allen, “Diode laser sensor for gasdynamic measurements in a model scramjet combustor,” AIAA J. 38, 1246–1252 (2000). [CrossRef]
  12. E. B. Bryner, G. S. Diskin, C. P. Goyne, J. C. McDaniel, R. H. Krauss, and T. A. Slate, “Water vapor concentration measurement in high enthalpy flows using infrared absorption,” in Proceedings of Thirty-Ninth American Institute of Aeronautics and Astronautics/American Society of Mechanical Engineers/Society of Automotive Engineers/American Society for Engineering Education Joint Propulsion Conference and Exhibit (American Institute of Aeronautics and Astronautics, 2003), AIAA 2003-4580.
  13. A. D. Griffiths and A. F. P. Houwing, “Diode laser absorption spectroscopy of water vapor in a scramjet combustor,” Appl. Opt. 44, 6653–6659 (2005). [CrossRef]
  14. J. T. C. Liu, G. B. Rieker, J. B. Jeffries, M. R. Gruber, C. D. Carter, T. Mathur, and R. K. Hanson, “Near-infrared diode laser absorption diagnostic for temperature and water vapor in a scramjet combustor,” Appl. Opt. 44, 6701–6711 (2005). [CrossRef]
  15. M. Gruber, C. Carter, and M. Ryan, “Laser-based measurements of OH, temperature and water vapor concentration in a Hydrocarbon-fueled scramjet,” in Proceedings of Forty-Fourth American Institute of Aeronautics and Astronautics/American Society of Mechanical Engineers/Society of Automotive Engineers/American Society for Engineering Education Joint Propulsion Conference and Exhibit (American Institute of Aeronautics and Astronautics, 2008), AIAA 2008-5070.
  16. C. D. Lindstrom, K. R. Jackson, S. Williams, R. Givens, W. F. Bailey, C. J. Tam, and W. F. Terry, “Shock-train structure resolved with absorption spectroscopy Part 1: system design and validation,” AIAA J. 47, 2368–2378 (2009). [CrossRef]
  17. G. B. Rieker, J. B. Jeffries, R. K. Hanson, T. Mathur, M. R. Gruber, and C. D. Carter, “Diode laser-based detection of combustor instabilities with application to a scramjet engine,” Proc. Combust. Inst. 32, 831–838 (2009). [CrossRef]
  18. L. C. Philippe and R. K. Hanson, “Laser diode wavelength modulation spectroscopy for simultaneous measurement of temperature, pressure and velocity in shock-heated oxygen flows,” Appl. Opt. 32, 6090–6103 (1993). [CrossRef]
  19. J. A. Silver, D. J. Kane, and P. S. Greenberg, “Quantitative species measurements in microgravity flames with near-IR diode lasers,” Appl. Opt. 34, 2787–2801 (1995). [CrossRef]
  20. M. Brown and T. Barhorst, “Post-flight analysis of the diode laser based mass capture experiment onboard HIFiRE flight1,” in Proceedings of Seventeenth AIAA International Space Planes and Hypersonic Systems and Technologies (American Institute of Aeronautics and Astronautics, 2011), AIAA 2011-2359.
  21. L. S. Rothman, I. E. Gordon, A. Barbe, D. C. Benner, P. F. Bernath, M. Birk, V. Boudon, L. R. Brown, A. Campargue, J. P. Champion, K. Chance, L. H. Coudert, V. Dana, V. M. Devi, S. Fally, J. M. Flaud, R. R. Gamache, A. Goldman, D. Jacquemart, I. Kleiner, N. Lacome, W. J. Lafferty, J. Y. Mandin, S. T. Massie, S. N. Mikhailenko, C. E. Miller, N. Moazzen-Ahmadi, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. I. Perevalov, A. Perrin, A. Predoi-Cross, C. P. Rinsland, M. Rotger, M. Šimečková, M. A. H. Smith, K. Sung, S. A. Tashkun, J. Tennyson, R. A. Toth, A. C. Vandaele, and J. VanderAuwera, “The HITRAN 2008 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 110, 533–572 (2009). [CrossRef]
  22. S. T. Sanders, J. A. Baldwin, T. P. Jenkins, D. S. Baer, and R. K. Hanson, “Diode-laser sensor for monitoring multiple combustion parameters in pulse detonation engines,” Proc. Combust. Inst. 28, 587–594 (2000). [CrossRef]
  23. X. Zhou, X. Liu, J. B. Jeffries, and R. K. Hanson, “Development of a sensor for temperature and water concentration in combustion gases using a single tunable diode laser,” Meas. Sci. Technol. 14, 1459–1468 (2003). [CrossRef]
  24. F. Li, X. Yu, H. Gu, Z. Li, L. Chen, and X. Chang, “Measurement of temperature, velocity and water vapor concentration in a scramjet combustor based on near-infrared diode laser absorption,” in Proceedings of Seventeenth AIAA International Space Planes and Hypersonic Systems and Technologies (American Institute of Aeronautics and Astronautics, 2011), AIAA 2011-2214.
  25. W. Cai, D. J. Ewing, and L. Ma, “Application of simulated annealing for multispectral tomography,” Comput. Phys. Commun. 179, 250–255 (2008). [CrossRef]
  26. S. T. Sanders, J. Wang, J. B. Jeffries, and R. K. Hanson, “Diode-laser absorption sensor for line-of-sight gas temperature distributions,” Appl. Opt. 40, 4404–4415 (2001). [CrossRef]
  27. X. Liu, J. B. Jeffries, and R. K. Hanson, “Measurement of nonuniform temperature distributions using line-of-sight absorption spectroscopy,” AIAA J. 45, 411–419 (2007). [CrossRef]
  28. G. B. Rieker, H. Li, X. Liu, J. B. Jeffries, R. K. Hanson, M. G. Allen, S. D. Wehe, P. A. Mulhall, and H. S. Kindle, “A diode laser sensor for rapid, sensitive measurements of gas temperature and water vapour concentration at high temperatures and pressures,” Meas. Sci. Technol. 18, 1195–1204(2007). [CrossRef]
  29. R. K. Hanson and J. B. Jeffries, “Diode laser sensor for ground testing,” in Proceedings of Twenty-fifth Aerodynamic Measurement Technology and Ground Testing Conference(American Institute of Aeronautics and Astronautics, 2006), AIAA 2006-3441.
  30. J. A. Silver and D. J. Kane, “Diode laser measurements of concentration and temperature in microgravity combustion,” Meas. Sci. Technol. 10, 845–852 (1999). [CrossRef]
  31. X. Liu, J. B. Jeffries, R. K. Hanson, K. M. Hinckley, and M. A. Woodmansee, “Development of a tunable diode laser sensor for measurements of gas turbine exhaust temperature,” Appl. Phys. B 82, 469–478 (2006). [CrossRef]
  32. H. Gu, L. Chen, and X. Chang, “Experimental investigation on the cavity-based scramjet model,” Chin. Sci. Bull. 54, 2794–2799 (2009). [CrossRef]
  33. F. Li, X. Yu, H. Gu, Z. Li, L. Chen, and X. Chang, “Measurement of flow parameters in a scramjet combustor based on near-infrared absorption,” Chin. J. Theor. Appl. Mech.43, 1–7 (2011) (in Chinese).
  34. M. D. Lahr, R. W. Pitz, Z. W. Douglas, and C. D. Carter, “Hydroxyl-tagging-velocimetry measurements of a supersonic flow over a cavity,” J. Propul. Power 26, 790–797(2010). [CrossRef]
  35. Y. Pan, Z. G. Wang, and W. D. Liu, “Introduction of scramjet combustion efficiencies measurement methods,” J. Exp. Fluid Mech. 21, 68–73 (2007) (in Chinese).
  36. E. R. G. Eckert, “Engineering relations for heat transfer and friction in high-velocity laminar and turbulent boundary layer flow over surfaces with constant pressure and temperature,” Trans. ASME 78, 1273–1284 (1956).
  37. J. T. C. Liu, J. B. Jeffries, and R. K. Hanson, “Wavelength modulation absorption spectroscopy with 2f detection using multiplexed diode lasers for rapid temperature measurements in gaseous flows,” Appl. Phys. B 78, 503–511 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited