OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 50, Iss. 4 — Feb. 1, 2011
  • pp: 415–426

Realization of integrated polarizer and color filters based on subwavelength metallic gratings using a hybrid numerical scheme

Nghia Nguyen-Huu, Yu-Lung Lo, Yu-Bin Chen, and Tsai-Yu Yang  »View Author Affiliations

Applied Optics, Vol. 50, Issue 4, pp. 415-426 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1178 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



This study realizes integrated polarizer and RGB (red, green, and blue) color filters using single- and multiple-layered subwavelength metallic grating structures. A hybrid numerical scheme based on the rigorous coupled-wave analysis method and a genetic algorithm is used to determine the optimal values of the grating period, filling factor, and grating thickness of three different grating structures, namely, a single-layer grating, a double-layer grating, and a double-layer grating with a lateral shift. The optical performance of the various structures is evaluated and compared in terms of the transmission efficiency at the center wavelengths 700.0 nm , 546.1 nm , and 435.8 nm of red, green, and blue light, respectively, and the extinction ratio over the visible wavelength spectrum ( 380 780 nm ). It is shown that the double-layer grating achieves a transmission efficiency of about 50% and an extinction ratio of around 60 dB . Thus, this grating structure provides a convenient and effective means of achieving the polarizing and filtering functions in LCD panels using a single device.

© 2011 Optical Society of America

OCIS Codes
(050.0050) Diffraction and gratings : Diffraction and gratings
(230.3720) Optical devices : Liquid-crystal devices
(230.5440) Optical devices : Polarization-selective devices
(050.6624) Diffraction and gratings : Subwavelength structures
(230.7408) Optical devices : Wavelength filtering devices

ToC Category:
Diffraction and Gratings

Original Manuscript: October 19, 2010
Manuscript Accepted: December 5, 2010
Published: January 26, 2011

Nghia Nguyen-Huu, Yu-Lung Lo, Yu-Bin Chen, and Tsai-Yu Yang, "Realization of integrated polarizer and color filters based on subwavelength metallic gratings using a hybrid numerical scheme," Appl. Opt. 50, 415-426 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. P. Yeh and C. Gu, Optics of Liquid Crystal Displays (Wiley-Interscience, 1999), pp. 1–19.
  2. M. Xu, H. Urbach, D. de Boer, and H. Cornelissen, “Wire-grid diffraction gratings used as polarizing beam splitter for visible light and applied in liquid crystal on silicon,” Opt. Express 13, 2303–2320 (2005). [CrossRef] [PubMed]
  3. Y. Ekinci, H. H. Solak, C. David, and H. Sigg, “Bilayer Al wire-grids as broadband and high-performance polarizers,” Opt. Express 14, 2323–2334 (2006). [CrossRef] [PubMed]
  4. D.-R. Chiou, K.-Y. Yeh, and L.-J. Chen, “Adjustable pretilt angle of nematic 4-n-pentyl-4′-cyanobiphenyl on self-assembled monolayers formed from organosilanes on square-wave grating silica surfaces,” Appl. Phys. Lett. 88, 133123(2006). [CrossRef]
  5. H.-S. Lee, Y.-T. Yoon, S.-S. Lee, S.-H. Kim, and K.-D. Lee, “Color filter based on a subwavelength patterned metal grating,” Opt. Express 15, 15457–15463 (2007). [CrossRef] [PubMed]
  6. Y. Kanamori, M. Shimono, and K. Hane, “Fabrication of transmission color filters using silicon subwavelength gratings on quartz substrates,” IEEE Photonics Technol. Lett. 18, 2126–2128 (2006). [CrossRef]
  7. D. Kim and K. Burke, “Design of a grating-based thin-film filter for broadband spectropolarimetry,” Appl. Opt. 42, 6321–6326 (2003). [CrossRef] [PubMed]
  8. C.-Y. Chen and Y.-L. Lo, “Integration of a-Si:H solar cell with novel twist nematic liquid crystal cell for adjustable brightness and enhanced power characteristics,” Solar Energy Mater. Sol. Cells 93, 1268–1275 (2009). [CrossRef]
  9. C.-Y. Chen and Y.-L. Lo, “Feasibility study on TN-LC cell with two cross embedded wire-grid polarizers as alignment and electrode for projection displays,” Appl. Opt. 48, 6558–6566(2009). [CrossRef] [PubMed]
  10. K.-W. Chien and H.-P. D. Shieh, “Design and fabrication of an integrated polarized light guide for liquid-crystal-display illumination,” Appl. Opt. 43, 1830–1834 (2004). [CrossRef] [PubMed]
  11. M. G. Moharam, E. B. Grann, D. A. Pommet, and T. K. Gaylord, “Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings,” J. Opt. Soc. Am. A 12, 1068–1076 (1995). [CrossRef]
  12. J. H. Holland, Adaption in Natural and Artificial Systems (Cambridge, 1992), pp. 32–36.
  13. A. D. Rakic, A. B. Djurisic, J. M. Elazar, and M. L. Majewski, “Optical properties of metallic films for vertical-cavity optoelectronic devices,” Appl. Opt. 37, 5271–5283 (1998). [CrossRef]
  14. E. D. Palik, Handbook of Optical Constant of Solids(Academic, 1985), pp. 749–763.
  15. M. G. Moharam, D. A. Pommet, E. B. Grann, and T. K. Gaylord, “Stable implementation of the rigorous coupled-wave analysis for surface relief gratings: Enhanced transmittance matrix approach,” J. Opt. Soc. Am. A 12, 1077–1086 (1995). [CrossRef]
  16. L. Li, “Use of Fourier series in the analysis of discontinuous periodic structures,” J. Opt. Soc. Am. A 13, 1870–1876 (1996). [CrossRef]
  17. Y. B. Chen, Z. M. Zhang, and P. J. Timans, “Radiative properties of patterned wafers with nanoscale linewidth,” J. Heat Transfer 129, 79–90 (2007). [CrossRef]
  18. Z. Michalewicz, Genetic Algorithms + Data Structures =Evolution Programs (Spring-Verlag, 1992), pp. 101–105.
  19. T.-C. Yu and Y.-L. Lo, “A novel heterodyne polarimeter for the multiple-parameter measurements of twisted nematic liquid crystal cell using a genetic algorithm approach,” J. Lightwave Technol. 25, 946–951 (2007). [CrossRef]
  20. J. Guild, “The colorimetric properties of the spectrum,” Philos. Trans. R. Soc. London 230, 149–187 (1931). [CrossRef]
  21. A. K. Azad, Y. Zhao, W. Zhang, and M. He, “Effect of dielectric properties of metals on terahertz transmission in subwavelength hole arrays,” Opt. Lett. 31, 2637–2639 (2006). [CrossRef] [PubMed]
  22. G. Schider, J. R. Krenn, W. Gotschy, B. Lamprecht, H. Ditlbacher, A. Leitner, and F. R. Aussenegg, “Optical properties of Ag and Au nanowire gratings,” J. Appl. Phys. 90, 3825–3830 (2001). [CrossRef]
  23. H. B. Chan, Z. Marcet, K. Woo, D. B. Tanner, D. W. Carr, J. E. Bower, R. A. Cirelli, E. Ferry, F. Klemens, J. Miner, C. S. Pai, and J. A. Taylor, “Optical transmission through double-layer metallic subwavelength slit arrays,” Opt. Lett. 31, 516–518(2006). [CrossRef] [PubMed]
  24. Y.-T. Yoon, H.-S. Lee, S.-S. Lee, S. H. Kim, J.-D. Park, and K.-D. Lee, “Color filter incorporating a subwavelength patterned grating in poly silicon,” Opt. Express 16, 2374–2380(2008). [CrossRef] [PubMed]
  25. Q. Chen and D. R. S. Cumming, “High transmission and low color cross-talk plasmonic color filters using triangular-lattice hole arrays in aluminum films,” Opt. Express 18, 14056–14062 (2010). [CrossRef] [PubMed]
  26. Y.-T. Yoon and S.-S. Lee, “Transmission type color filter incorporating a silver film based etalon,” Opt. Express 18, 5344–5349 (2010). [CrossRef] [PubMed]
  27. J. J. Wang, L. Chen, X. Liu, P. Sciortino, F. Liu, F. Walters, and X. Deng, “30 nm-wide aluminum nanowire grid for ultrahigh contrast and transmittance polarizers made by UV-nanoimprint lithography,” Appl. Phys. Lett. 89, 141105–141103 (2006). [CrossRef]
  28. M. D. Austin, H. Ge, W. Wu, M. Li, Z. Yu, D. Wasserman, S. A. Lyon, and S. Y. Chou, “Fabrication of 5 nm linewidth and 14 nm pitch features by nanoimprint lithography,” Appl. Phys. Lett. 84, 5299–5301 (2004). [CrossRef]
  29. M. D. Austin, W. Zhang, H. Ge, D. Wasserman, S. A. Lyon, and S. Y. Chou, “6 nm half-pitch lines and 0.04 μm2 static random access memory patterns by nanoimprint lithography,” Nanotechnology 16, 1058 (2005). [CrossRef]
  30. Z. Yu, L. Chen, W. Wu, H. Ge, and S. Y. Chou, “Fabrication of nanoscale gratings with reduced line edge roughness using nanoimprint lithography,” J. Vac. Sci. Technol. B 21, 2089–2092 (2003). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited