OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 50, Iss. 4 — Feb. 1, 2011
  • pp: 427–433

Refractive index determination of transparent samples by noniterative phase retrieval

Johannes Frank, Jan Matrisch, Jens Horstmann, Stefan Altmeyer, and Guenther Wernicke  »View Author Affiliations

Applied Optics, Vol. 50, Issue 4, pp. 427-433 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (483 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present a simple method to determine the refractive indices of transparent specimens. The refractive index of an object under investigation is received by evaluating the optical path difference introduced by the object, while taking into account geometric parameters. The optical path difference that corresponds to the phase distribution is obtained by a noninterferometric, noniterative phase retrieval method based on Green’s functions. It will be shown that this technique is a highly accurate and quantitative method for refractive index determination.

© 2011 Optical Society of America

OCIS Codes
(060.2270) Fiber optics and optical communications : Fiber characterization
(100.0100) Image processing : Image processing
(100.5070) Image processing : Phase retrieval
(110.0180) Imaging systems : Microscopy

ToC Category:
Image Processing

Original Manuscript: September 7, 2010
Revised Manuscript: December 3, 2010
Manuscript Accepted: December 10, 2010
Published: January 26, 2011

Virtual Issues
Vol. 6, Iss. 3 Virtual Journal for Biomedical Optics

Johannes Frank, Jan Matrisch, Jens Horstmann, Stefan Altmeyer, and Guenther Wernicke, "Refractive index determination of transparent samples by noniterative phase retrieval," Appl. Opt. 50, 427-433 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. Frank, S. Altmeyer, and G. Wernicke, “Non-interferometric, non-iterative phase retrieval by Green’s functions,” J. Opt. Soc. Am. A 27, 2244–2251 (2010). [CrossRef]
  2. M. A. El-Morsy, T. Yatagai, A. A. Hamza, M. A. Mabrouk, and T. Z. N. Sokkar, “Automatic refractive index profiling of fibers by phase analysis method using Fourier transform,” Opt. Lasers Eng. 38, 509–525 (2002). [CrossRef]
  3. A. A. Hamza, T. Z. N. Sokkar, M. A. El-Bakary, and A. M. Ali, “An interferometric method for studying the influence of temperature on the mean refractive indices and cross-sectional area of irregular fibres,” Polym. Test. 22, 83–91 (2003). [CrossRef]
  4. A. A. Hamza, M. A. Mabrouk, W. A. Ramadan, and H. H. Wahba, “Core-index determination of a thick fibre using lens-fibre interference (LFI) technique,” Opt. Lasers Eng. 42, 121–130 (2004). [CrossRef]
  5. I. Martincek, D. Kacik, I. Turek, and P. Peterka, “The determination of the refractive index profile in α-profile optical fibres by intermodal interference investigation,” Optik 115, 86–88 (2004). [CrossRef]
  6. Z. Liu, X. Dong, Q. Chen, C. Yin, Y. Xu, and Y. Zheng, “Nondestructive measurement of an optical fiber refractive-index profile by a transmitted-light differential interference contact microscope,” Appl. Opt. 43, 1485–1492 (2004). [CrossRef] [PubMed]
  7. T. Z. N. Sokkar, H. M. El Dessouky, M. A. Shams-Eldin, and M. A. El-Morsy, “Automatic fringe analysis of two-beam interference patterns for measurement of refractive index and birefringence profiles of fibres,” Opt. Lasers Eng. 45, 431–441 (2007). [CrossRef]
  8. H. H. Wahba and T. Kreis, “Characterization of graded index optical fiber by digital holographic interferometry,” Appl. Opt. 48, 1573–1582 (2009). [CrossRef] [PubMed]
  9. P. Stock, Manufacturing Department, FiberTech GmbH, Nalepastrasse 170–171, 12459 Berlin (personal communication, 2009).
  10. G. Fornaro, G. Franceschetti, and R. Lanari, “Interferometric SAR phase unwrapping using Green’s formulation,” IEEE Trans. Geosci. Remote Sens. 34, 720–727 (1996). [CrossRef]
  11. H. Maitre and I. Lyuboshenko, “Robust algorithms for phase unwrapping in SAR interferometry,” Proc. SPIE 3217, 176–187 (1997). [CrossRef]
  12. I. Lyuboshenko and H. Maitre, “Phase unwrapping for interferometric synthetic aperture radar by use of Helmholtz equation eigenfunctions and the first Green’s identity,” J. Opt. Soc. Am. A 16, 378–395 (1999). [CrossRef]
  13. E. G. Abramochkin and V. G. Volostnikov, “Relationship between two-dimensional intensity and phase in a Fresnel diffraction zone,” Opt. Commun. 74, 144–148 (1989). [CrossRef]
  14. M. R. Teague, “Deterministic phase retrieval: a Green’s function solution,” J. Opt. Soc. Am. 73, 1434–1441 (1983). [CrossRef]
  15. D. Paganin and K. A. Nugent, “Noninterferometric phase imaging with partially coherent light,” Phys. Rev. Lett. 80, 2586–2589 (1998). [CrossRef]
  16. N. Streibl, “Phase imaging by the transport equation of intensity,” Opt. Commun. 49, 6–10 (1984). [CrossRef]
  17. E. D. Barone-Nugent, A. Barty, and K. A. Nugent, “Quantitative phase-amplitude microscopy I: optical microscopy,” J. Microsc. 206, 194–203 (2002). [CrossRef] [PubMed]
  18. P. J. McMohan, E. D. Barone-Nugent, B. E. Allman, and K. A. Nugent, “Quantitative phase-amplitude microscopy II: differential interference contrast imaging for biological TEM,” J. Microsc. 206, 204–208 (2002). [CrossRef]
  19. C. J. Bellair, C. L. Curl, B. E. Allman, P. J. Harris, A. Roberts, L. M. D. Delbridge, and K. A. Nugent, “Quantitative phase-amplitude microscopy IV: imaging thick specimens,” J. Microsc. 214, 62–69 (2004). [CrossRef] [PubMed]
  20. M. Beleggia, M. A. Schofield, V. V. Volkov, and Y. Zhu, “On the transport of intensity technique for phase retrieval,” Ultramicroscopy 102, 37–49 (2004). [CrossRef] [PubMed]
  21. C. Dorrer and J. D. Zuegel, “Optical testing using the transport-of-intensity equation,” Opt. Express 15, 7165–7175 (2007). [CrossRef] [PubMed]
  22. A. V. Martin, F.-R. Chen, W.-K. Hsieh, J.-J. Kai, S. D. Findlay, and L. J. Allen, “Spatial incoherence in phase retrieval based on focus variation,” Ultramicroscopy 106, 914–924(2006). [CrossRef] [PubMed]
  23. A. Koehler, “Ein neues Beleuchtungsverfahren fuer mikrophotographische Zwecke,” Z. Wiss. Mikrosk. Mikrosk. Tech. 10, 443–440 (1893).
  24. D. Paganin, A. Barty, P. J. McMohan, and K. A. Nugent, “Quantitative phase-amplitude microscopy III: the effects of noise,” J. Microsc. 214, 51–61 (2004). [CrossRef] [PubMed]
  25. S. Altmeyer and J. Frank, “Optics and information technology,” in Technology Guide Principles—Applications—Trends, H.-J.Bullinger, ed. (Springer, 2009), pp. 98–103. [CrossRef]
  26. FiberTech GmbH, “Quartz/quartz fibers—all silica (AS), specifications,” http://www.leoni-fiber-optics.com/Quarz-Quarz-Fasern-All-Silica-AS.11918.0.html?&L=1.
  27. B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (Wiley, 2007).
  28. A. Barty, K. A. Nugent, D. Paganin, and A. Roberts, “Quantitative optical phase microscopy,” Opt. Lett. 23, 817–819 (1998). [CrossRef]
  29. A. Roberts, E. Ampem-Lassen, A. Barty, K. A. Nugent, G. W. Baxter, N. M. Dragomir, and S. T. Huntington, “Refractive-index profiling of optical fibers with axial symmetry by use of quantitative phase microscopy,” Opt. Lett. 27, 2061–2063(2002). [CrossRef]
  30. E. Ampem-Lassen, S. T. Huntington, N. M. Dragomir, K. A. Nugent, and A. Roberts, “Refractive index profiling of axially symmetric optical fibers: a new technique,” Opt. Express 13, 3277–3282 (2005). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited