OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 50, Iss. 4 — Feb. 1, 2011
  • pp: 447–453

Lunar absorption spectrophotometer for measuring atmospheric water vapor

Richard R. Querel and David A. Naylor  »View Author Affiliations


Applied Optics, Vol. 50, Issue 4, pp. 447-453 (2011)
http://dx.doi.org/10.1364/AO.50.000447


View Full Text Article

Enhanced HTML    Acrobat PDF (972 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A novel instrument has been designed to measure the nighttime atmospheric water vapor column abundance by near-infrared absorption spectrophotometry of the Moon. The instrument provides a simple, effective, portable, and inexpensive means of rapidly measuring the water vapor content along the lunar line of sight. Moreover, the instrument is relatively insensitive to the atmospheric model used and, thus, serves to provide an independent calibration for other measures of precipitable water vapor from both ground- and space-based platforms.

© 2011 Optical Society of America

OCIS Codes
(010.7340) Atmospheric and oceanic optics : Water
(120.5630) Instrumentation, measurement, and metrology : Radiometry
(280.4788) Remote sensing and sensors : Optical sensing and sensors

ToC Category:
Atmospheric and Oceanic Optics

History
Original Manuscript: October 20, 2010
Manuscript Accepted: November 26, 2010
Published: January 26, 2011

Citation
Richard R. Querel and David A. Naylor, "Lunar absorption spectrophotometer for measuring atmospheric water vapor," Appl. Opt. 50, 447-453 (2011)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-50-4-447


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. H. Shibai, “AKARI (ASTRO-F): flight performance and preliminary results,” Adv. Space Res. 40, 595–599 (2007). [CrossRef]
  2. G. L. Pilbratt, J. R. Riedinger, T. Passvogel, G. Crone, D. Doyle, U. Gageur, A. M. Heras, C. Jewell, L. Metcalfe, S. Ott, and M. Schmidt, “Herschel Space Observatory—an ESA facility for far-infrared and submillimetre astronomy,” arXiv:1005.5331v1 (2010).
  3. R. R. Phillips and D. A. Naylor, “Initial operations of an water vapour monitor (IRMA) at Gemini South, Las Campanas Observatories, and in the TMT site testing role,” Proc. SPIE 6269, 62695K (2006). [CrossRef]
  4. BTRAM website: http://www.blueskyspectroscopy.com/btram/.
  5. I. M. Chapman,D. A. Naylor, B. Gom, and R. R. Querel are preparing a manuscript to be called “BTRAM: an interactive atmospheric radiative transfer model.”
  6. W. A. Traub and M. T. Stier, “Theoretical atmospheric transmission in the mid-and far-infrared at four altitudes,” Appl. Opt. 15, 364–377 (1976). [CrossRef] [PubMed]
  7. M. McKinnon, “Measurement of atmospheric opacity due to water vapor at 225 GHz,” Atacama Large Millimeter Array Memo 40 (Atacama Large Millimeter Array, 1987).
  8. A. Stirling, R. Hills, J. Richer, and J. Pardo, “183 GHz water vapour radiometers for ALMA: estimation of phase errors under varying atmospheric conditions,” Atacama Large Millimeter Array Memo 496 (Atacama Large Millimeter Array, 2004).
  9. D. A. Naylor, R. R. Phillips, J. di Francesco, T. L. Bourke, R. R. Querel, and S. C. Jones, “IRMA as a potential phase correction instrument: results from the SMA test campaign,” Int. J. Infrared Milli. Waves 29, 1196–1204 (2008). [CrossRef]
  10. M. Rast, J. L. Bezy, and S. Bruzzi, “The ESA Medium Resolution Imaging Spectrometer MERIS a review of the instrument and its mission,” Int. J. Rem. Sens. 20, 1681–1702 (1999). [CrossRef]
  11. R. R. Querel, D. A. Naylor, J. Thomas-Osip, G. Prieto, and A. McWilliam, “Comparison of precipitable water vapour measurements made with an optical echelle spectrograph and an infrared radiometer at Las Campanas Observatory,” Proc. SPIE 7014, 701457 (2008). [CrossRef]
  12. A. K. Vance, J. P. Taylor, T. J. Hewison, and J. Elms, “Comparison of in situ humidity data from aircraft, dropsonde, and radiosonde,” J. Atmos. Ocean. Technol. 21, 921–932 (2004). [CrossRef]
  13. R. M. Goody and J. C. G. Walker, Atmospheres, 1st ed.(Prentice-Hall, 1972).
  14. K. J. Thome, M. W. Smith, J. M. Palmer, and J. A. Reagan, “Three-channel solar radiometer for the determination of atmospheric columnar water vapor,” Appl. Opt. 33, 5811–5819(1994). [CrossRef] [PubMed]
  15. H. H. Kieffer and T. C. Stone, “The spectral irradiance of the moon,” Astron. J. 129, 2887–2901 (2005). [CrossRef]
  16. Omega Optical, Inc., http://www.omegafilters.com/.
  17. FDS100 Silicon Photodiode, ThorLabs, Inc., http://www.thorlabs.com/.
  18. LS-1 tungsten halogen light source, http://www.oceanoptics.com/.
  19. FieldSpec 3 Hi-Res., ASD, Inc., http://www.asdi.com/.
  20. USB4000-VIS-NIR miniature fiber optic spectrometer, http://www.oceanoptics.com/.
  21. RTS-3ZC Integrating Sphere, ASD, Inc., http://www.asdi.com/.
  22. Model 970 Pegasus R, Isothermal Technology Ltd., http://www.isotech.co.uk/.
  23. Data Translation DT9822, http://www.datatranslation.com/.
  24. R. Querel, F. Kerber, G. L. Curto, J. Thomas-Osip, G. Prieto, A. Chacón, O. Cuevas, D. Pozo, J. Marín, D. Naylor, M. Curé, M. Sarazin, C. Guirao, and G. Avila, “Support for site testing of the European Extremely Large Telescope: precipitable water vapor over La Silla,” Proc. SPIE 7733, 773349 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited