OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 50, Iss. 4 — Feb. 1, 2011
  • pp: 454–459

Coupled-wave analysis of vector holograms. 2. Reflective gratings formed in photoanisotropic medium with uniaxial birefringence

Tomoyuki Sasaki, Kenta Miura, Osamu Hanaizumi, Akira Emoto, and Hiroshi Ono  »View Author Affiliations


Applied Optics, Vol. 50, Issue 4, pp. 454-459 (2011)
http://dx.doi.org/10.1364/AO.50.000454


View Full Text Article

Enhanced HTML    Acrobat PDF (630 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The diffraction properties of reflective anisotropic gratings, which can be recorded in photoanisotropic media with uniaxial birefringence by three-dimensional vector holography, were characterized through the use of coupled-wave analysis (CWA). By investigating the perturbation of the dielectric tensor, we demonstrated that the gratings with sinusoidal distribution of the azimuthal angle of the optic axis diffract polarized light in which the ordinary and extraordinary components are converted for incident light. The polarization conversion was consistent with that calculated by a numerical method. In addition, it was shown that CWA enables highly accurate calculation of the diffraction efficiency with wavelength dispersion when the amplitude of the azimuthal angle is small.

© 2011 Optical Society of America

OCIS Codes
(050.7330) Diffraction and gratings : Volume gratings
(090.1970) Holography : Diffractive optics
(160.1190) Materials : Anisotropic optical materials

ToC Category:
Holography

History
Original Manuscript: September 28, 2010
Manuscript Accepted: November 17, 2010
Published: January 26, 2011

Citation
Tomoyuki Sasaki, Kenta Miura, Osamu Hanaizumi, Akira Emoto, and Hiroshi Ono, "Coupled-wave analysis of vector holograms. 2. Reflective gratings formed in photoanisotropic medium with uniaxial birefringence," Appl. Opt. 50, 454-459 (2011)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-50-4-454


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. T. D. Ebralidze, “Model of an anisotropic diffraction grating,” Opt. Spectrosk. 53, 944–946 (1982).
  2. L. Nikolova and T. Todorov, “Diffraction efficiency and selectivity of polarization holographic recording,” Opt. Acta 31, 579–588 (1984). [CrossRef]
  3. T. Huang and K. H. Wagner, “Holographic diffraction in photoanisotropic organic materials,” J. Opt. Soc. Am. A 10, 306–315 (1993). [CrossRef]
  4. L. Nikolova, T. Todorov, M. Ivanov, F. Andruzzi, S. Hvilsted, and P. S. Ramanujam, “Polarization holographic gratings in side-chain azobenzene polyesters with linear and circular photoanisotropy,” Appl. Opt. 35, 3835–3840 (1996). [CrossRef] [PubMed]
  5. R. Birabassov and T. V. Galstian, “Analysis of the recording and reconstruction of the polarization state of light,” J. Opt. Soc. Am. B 18, 1423–1427 (2001). [CrossRef]
  6. F.-L. Labarthet, T. Buffeteau, and C. Sourisseau, “Inscription of holographic gratings using circularly polarized light: influence of the optical set-up on birefringence and surface relief grating properties,” Appl. Phys. B 74, 129–137 (2002). [CrossRef]
  7. F. Ciuchi, A. Mazzulla, and G. Cipparrone, “Permanent polarization gratings in elastomer comparison of layered and mixed samples,” J. Opt. Soc. Am. B 19, 2531–2537 (2002). [CrossRef]
  8. H. Ono, A. Emoto, N. Kawatsuki, and T. Hasegawa, “Self-organized phase gratings in photoreactive polymer liquid crystals,” Appl. Phys. Lett. 82, 1359–1361 (2003). [CrossRef]
  9. I. C. Khoo, H. Li, and Y. Liang, “Optically induced extraordinarily large negative orientational nonlinearity in dye-doped liquid crystal,” IEEE J. Quantum Electron. 29, 1444–1447(1993). [CrossRef]
  10. F. Simoni, O. Francescangeli, Y. Reznikov, and S. Slussarenko, “Dye-doped liquid crystals as high-resolution recording media,” Opt. Lett. 22, 549–551 (1997). [CrossRef] [PubMed]
  11. H. Ono, T. Sasaki, A. Emoto, N. Kawatsuki, and E. Uchida, “Polarization gratings in twisted-nematic liquid-crystal composites doped with azobenzene dye,” Opt. Lett. 30, 1950–1952 (2005). [CrossRef] [PubMed]
  12. W.-Y. Wu, T.-S. Mo, and A. Y.-G. Fuh, “Polarization characteristics of diffracted beams from twisted nematic gratings fabricated by the photoalignment effect in dye-doped liquid-crystal films,” J. Opt. Soc. Am. B 23, 1737–1742 (2006). [CrossRef]
  13. S. P. Gorkhali, S. G. Cloutier, G. P. Crawford, and R. A. Pelcovits, “Stable polarization gratings recorded in azo-dye-doped liquid crystals,” Appl. Phys. Lett. 88, 251113 (2006). [CrossRef]
  14. T. Sasaki, H. Ono, and N. Kawatsuki, “Three-dimensional vector holograms in anisotropic photoreactive liquid-crystal composites,” Appl. Opt. 47, 2192–2200 (2008). [CrossRef] [PubMed]
  15. X. Wang, B. Wang, P. J. Bos, P. F. McManamon, J. J. Pouch, F. A. Miranda, and J. E. Anderson, “Modeling and design of an optimized liquid-crystal optical phase array,” J. Appl. Phys. 98, 073101 (2005). [CrossRef]
  16. C. Oh and M. J. Escuti, “Numerical analysis of polarization gratings using the finite-difference time-domain method,” Phys. Rev. A 76, 043815 (2007). [CrossRef]
  17. H. Ono, T. Sekiguchi, A. Emoto, T. Shioda, and N. Kawatsuki, “Light wave propagation and Bragg diffraction in thick polarization gratings,” Jpn. J. Appl. Phys. 47, 7963–7967 (2008). [CrossRef]
  18. K. S. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media,” IEEE Trans. Antennas Propag. 14, 302–307 (1966). [CrossRef]
  19. A. Taflove and S. C. Gedne, Computational Electrodynamics: the Finite-Difference Time-Domain Method (Artech House, 2005).
  20. T. Sasaki, K. Miura, O. Hanaizumi, A. Emoto, and H. Ono, “Coupled-wave analysis of vector holograms: effects of modulation depth of anisotropic phase retardation,” Appl. Opt. 49, 5205–5211 (2010). [CrossRef] [PubMed]
  21. A. Lien, “Extended Jones matrix method representation for the twisted nematic liquid-crystal display at oblique incidence,” Appl. Phys. Lett. 57, 2767–2769 (1990). [CrossRef]
  22. P. Yeh and G. Gu, Optics of Liquid Crystal Displays (Wiley, 1999).
  23. T. Scharf, Polarized Light in Liquid Crystals and Polymers (Wiley, 2007).
  24. D. W. Berreman, “Optics in stratified and anisotropic media: 4×4-matrix formulation,” J. Opt. Soc. Am. 62, 502–510 (1972). [CrossRef]
  25. W. H. Southwell, “Gradient-index antireflection coatings,” Opt. Lett. 8, 584–586 (1983). [CrossRef] [PubMed]
  26. H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969).
  27. H. Sarkissian, B. Ya Zeldovich, and N. V. Tabriyan, “Longitudinally modulated nematic bandgap structure,” J. Opt. Soc. Am. B 23, 1712–1717 (2006). [CrossRef]
  28. H. Sarkissian, B. Ya Zeldovich, and N. V. Tabriyan, “Polarization-universal bandgap in periodically twisted nematics,” Opt. Lett. 31, 1678–1680 (2006). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited