OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 50, Iss. 4 — Feb. 1, 2011
  • pp: 473–483

Laser guide star wavefront sensing for ground-layer adaptive optics on extremely large telescopes

Richard M. Clare, Miska Le Louarn, and Clementine Béchet  »View Author Affiliations


Applied Optics, Vol. 50, Issue 4, pp. 473-483 (2011)
http://dx.doi.org/10.1364/AO.50.000473


View Full Text Article

Enhanced HTML    Acrobat PDF (1059 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We propose ground-layer adaptive optics (GLAO) to improve the seeing on the 42 m European Extremely Large Telescope. Shack–Hartmann wavefront sensors (WFSs) with laser guide stars (LGSs) will experience significant spot elongation due to off-axis observation. This spot elongation influences the design of the laser launch location, laser power, WFS detector, and centroiding algorithm for LGS GLAO on an extremely large telescope. We show, using end-to-end numerical simulations, that with a noise-weighted matrix-vector-multiply reconstructor, the performance in terms of 50% ensquared energy (EE) of the side and central launch of the lasers is equivalent, the matched filter and weighted center of gravity centroiding algorithms are the most promising, and approximately 10 × 10 undersampled pixels are optimal. Significant improvement in the 50% EE can be observed with a few tens of photons/subaperture/frame, and no significant gain is seen by adding more than 200 photons/subaperture/frame. The LGS GLAO is not particularly sensitive to the sodium profile present in the mesosphere nor to a short-timescale (less than 100 s ) evolution of the sodium profile. The performance of LGS GLAO is, however, sensitive to the atmospheric turbulence profile.

© 2011 Optical Society of America

OCIS Codes
(010.1080) Atmospheric and oceanic optics : Active or adaptive optics
(010.7350) Atmospheric and oceanic optics : Wave-front sensing

ToC Category:
Atmospheric and Oceanic Optics

History
Original Manuscript: August 31, 2010
Revised Manuscript: November 26, 2010
Manuscript Accepted: November 28, 2010
Published: January 27, 2011

Citation
Richard M. Clare, Miska Le Louarn, and Clementine Béchet, "Laser guide star wavefront sensing for ground-layer adaptive optics on extremely large telescopes," Appl. Opt. 50, 473-483 (2011)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-50-4-473


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. Nelson and G. H. Sanders, “The status of the Thirty Meter Telescope project,” Proc. SPIE 7012, 70121A (2008). [CrossRef]
  2. M. Johns, “Progress on the GMT,” Proc. SPIE 7012, 70121B(2008). [CrossRef]
  3. M. Kissler-Patig, “Overall science goals and top level AO requirements for E-ELT,” in Adaptive Optics for Extremely Large TelescopesY.Clénet, J.-M.Conan, T.Fusco, and G.Rousset (EDP Sciences, 2009), 01001.
  4. J. W. Hardy, Adaptive Optics for Astronomical Telescopes(Oxford University, 1998).
  5. N. Hubin, B. L. Ellerbroek, R. Arsenault, R. M. Clare, R. Dekany, L. Gilles, M. Kasper, G. Herriot, M. Le Louarn, E. Marchetti, S. Oberti, J. Stoesz, J.-P. Véran, and C. Vérinaud, “Adaptive optics for extremely large telescopes,” in Scientific Requirements for Extremely Large Telescopes: Proceedings of the IAU Symposium No. 232 , P.Whitelock, M.Dennefeld, and B.Leibundgut, eds. (International Astronomical Union, 2005), pp. 60–85.
  6. A. Tokovinin, “Seeing improvement with ground-layer adaptive optics,” Publ. Astron. Soc. Pac. 116, 941–951(2004). [CrossRef]
  7. M. Le Louarn and N. Hubin, “Wide-field adaptive optics for deep-field spectroscopy in the visible,” Mon. Not. R. Astron. Soc. 349, 1009–1018 (2004). [CrossRef]
  8. D. A. Andersen, J. Stoesz, S. Morris, M. Lloyd-Hart, D. Crampton, T. Butterley, B. Ellerbroek, L. Jolissaint, N. M. Milton, R. Myers, K. Szeto, A. Tokovinin, J.-P. Véran, and R. Wilson, “Performance modeling of a wide-field ground-layer adaptive optics system,” Publ. Astron. Soc. Pac. 118, 1574–1590(2006). [CrossRef]
  9. P. L. Wizinowich, D. Le Mignant, A. H. Bouchez, R. D. Campbell, J. C. Y. Chin, A. R. Contos, M. A. van Dam, S. K. Hartman, E. M. Johansson, R. E. Lafon, H. Lewis, P. J. Stomski, D. M. Summers, C. G. Brown, P. M. Danforth, and D. M. Pennington, “The W. M. Keck Observatory laser guide star adaptive optics system: overview,” Publ. Astron. Soc. Pac. 118, 297–309 (2006). [CrossRef]
  10. R. Foy and A. Labeyrie, “Feasibility of adaptive telescope with laser probe,” Astron. Astrophys. 152, L29–L31(1985).
  11. R. M. Clare, M. A. van Dam, and A. H. Bouchez, “Modeling low order aberrations in laser guide star adaptive optics systems,” Opt. Express 15, 4711–4725 (2007). [CrossRef] [PubMed]
  12. M. Le Louarn, C. Verinaud, V. Korkiakoski, and E. Fedrigo, “Parallel simulation tools for AO on ELTS,” Proc. SPIE 5490, 705–712 (2004). [CrossRef]
  13. O. Lardière, R. Conan, R. Clare, C. Bradley, and N. Hubin, “Performance comparison of centroiding algorithms for laser guide star wavefront sensing with Extremely Large Telescopes,” Appl. Opt. 49, G78–G94 (2010). [CrossRef]
  14. S. Thomas, T. Fusco, A. Tokovinin, M. Nicolle, V. Michau, and G. Rousset, “Comparison of centroid computation algorithms in a Shack–Hartmann sensor,” Mon. Not. R. Astron. Soc. 371, 323–336 (2006). [CrossRef]
  15. O. Lardière, R. Conan, C. Bradley, K. Jackson, and P. Hampton, “Radial thresholding to mitigate laser guide star aberrations on centre-of-gravity-based Shack–Hartmann wavefront sensors,” Mon. Not. R. Astron. Soc. 398, 1461–1467 (2009). [CrossRef]
  16. M. A. van Dam, A. H. Bouchez, D. Le Mignant, R. D. Campbell, J. C. Y. Chin, S. K. Hartman, E. M. Johansson, R. Lafon, P. J. Stomski Jr., D. M. Summers, and P. L. Wizinowich, “The W. M. Keck Observatory laser guide star adaptive optics system: performance characterization,” Publ. Astron. Soc. Pac. 118, 310–318 (2006). [CrossRef]
  17. L. A. Poyneer, “Scene-based Shack–Hartmann wave-front sensing: analysis and simulation,” Appl. Opt. 42, 5807–5815(2003). [CrossRef] [PubMed]
  18. L. Gilles and B. Ellerbroek, “Shack–Hartmann wavefront sensing with elongated sodium laser beacons: centroiding versus matched filtering,” Appl. Opt. 45, 6568–6576 (2006). [CrossRef] [PubMed]
  19. M. Tallon, I. Tallon-Bosc, É. Thiébaut, and C. Béchet, “Shack–Hartmann wavefront reconstruction with elongated sodium laser guide stars: improvements with priors and noise correlations,” Proc. SPIE 7015, 70151N (2008). [CrossRef]
  20. C. Béchet, M. Tallon, I. Tallon-Bosc, É. Thiébaut, M. Le Louarn, and R. M. Clare “Optimal reconstruction for closed-loop ground layer adaptive optics with elongated spots,” J. Opt. Soc. Am. A 27, A1–A8 (2010). [CrossRef]
  21. R. M. Clare, M. Le Louarn, and C. Béchet, “Optimal noise-weighted reconstruction with elongated Shack–Hartmann wavefront sensor images for laser tomography adaptive optics,” Appl. Opt. 49, G27–G36 (2010). [CrossRef]
  22. R. Hölzlohner, D. Bonnacini Calia, and W. Hackenberg“Physical optics modeling and optimization of laser guide star propagation,” Proc. SPIE 7015, 701521 (2008). [CrossRef]
  23. M. Downing, J. Kolb, D. Baade, O. Iwert, N. Hubin, J. Reyes, P. Feautrier, j. L. Gach, P. Balard, C. Guillaume, E. Stadler, and Y. Magnard, “AO wavefront sensing detector developments at ESO,” Proc. SPIE 7742, 774204(2010). [CrossRef]
  24. G. Lombardi, “Combining turbulence profiles from MASS and SLODAR: a study of the evolution of the seeing at Paranal,” Proc. SPIE 7012, 701221 (2008). [CrossRef]
  25. P. S. Argall, O. N. Vassiliev, R. J. Sica, and M. M. Mwangi, “Lidar measurements taken with a large-aperture liquid mirror. 2. Sodium resonance-fluorescence system,” Appl. Opt. 39, 2393–2400 (2000). [CrossRef]
  26. T. Pfrommer, P. Hickson, and C.-Y. She, “A large-aperture sodium fluorescence lidar with very high resolution for mesopause dynamics and adaptive optics studies,” Geophys. Res. Lett. 36, L15831 (2009). [CrossRef]
  27. V. A. Korkiakoski, M. Le Louarn, and C. Vérinaud, “Simulations of ground-layer adaptive optics for extremely large telescopes,” Proc. SPIE 6272, 62725A (2006). [CrossRef]
  28. D. Gratadour, E. Gendron, G. Rousset, and F. Rigaut, “Fratricide effect on ELTs,” in Adaptive Optics for Extremely Large Telescopes, Y.Clénet, J.-M.Conan, T.Fusco, and G.Rousset, eds. (EDP Sciences, 2009), p. 04005.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited