OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 50, Iss. 4 — Feb. 1, 2011
  • pp: 554–561

Phasing beams with different dispersions and application to the petawatt-class beamline at the National Ignition Facility

D. Homoelle, J. K. Crane, M. Shverdin, C. L. Haefner, and C. W. Siders  »View Author Affiliations

Applied Optics, Vol. 50, Issue 4, pp. 554-561 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1087 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In order to achieve the highest intensities possible with the short-pulse Advanced Radiographic Capability beamline at the National Ignition Facility (NIF), it will be necessary to phase the individual ARC apertures. This is made especially challenging because the design of ARC results in two laser beams with different dispersions sharing the same NIF aperture. The extent to which two beams with different dispersions can be phased with each other has been an open question. This paper presents results of an analysis showing that the different dispersion values that will be encountered by the shared-aperture beams will not preclude the phasing of the two beams. We also highlight a situation in which dispersion mismatch will prevent good phasing between apertures, and discuss the limits to which higher-order dispersion values may differ before the beams begin to dephase.

© 2011 Optical Society of America

OCIS Codes
(030.1640) Coherence and statistical optics : Coherence
(050.0050) Diffraction and gratings : Diffraction and gratings
(140.3290) Lasers and laser optics : Laser arrays
(140.7090) Lasers and laser optics : Ultrafast lasers
(140.3298) Lasers and laser optics : Laser beam combining

ToC Category:
Lasers and Laser Optics

Original Manuscript: September 10, 2010
Revised Manuscript: November 22, 2010
Manuscript Accepted: December 10, 2010
Published: January 31, 2011

D. Homoelle, J. K. Crane, M. Shverdin, C. L. Haefner, and C. W. Siders, "Phasing beams with different dispersions and application to the petawatt-class beamline at the National Ignition Facility," Appl. Opt. 50, 554-561 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. T. Y. Fan, “Laser beam combining for high-power, highradiance sources,” IEEE J. Sel. Top. Quantum Electron. 11, 567–577 (2005). [CrossRef]
  2. S. J. Augst, J. K. Ranka, T. Y. Fan, and A. Sanchez, “Beam combining of ytterbium fiber amplifiers,” J. Opt. Soc. Am. B 24, 1707–1715 (2007). [CrossRef]
  3. C. X. Yu, J. E. Kansky, S. E. J. Shaw, D. V. Murphy, and C. Higgs, “Coherent beam combining of large number of PM fibres in 2-D fibre array,” Electron. Lett. 42, 1024–1025 (2006). [CrossRef]
  4. M. A. Vorontsov, T. Weyrauch, L. A. Beresnev, G. W. Carhart, L. Liu, and K. Aschenbach, “Adaptive array of phase-locked fiber collimators: analysis and experimental demonstration,” IEEE J. Sel. Top. Quantum Electron. 15, 269–280 (2009). [CrossRef]
  5. E. I. Moses, R. N. Boyd, B. A. Remington, C. J. Keane, and R. Al-Ayat, “The National Ignition Facility: ushering in a new age for high energy density science,” Phys. Plasmas 16, 041006–041019 (2009). [CrossRef]
  6. C. P. J. Barty, M. Key, J. Britten, R. Beach, G. Beer, C. Brown, S. Bryan, J. Caird, T. Carlson, J. Crane, J. Dawson, A. C. Erlandson, D. Fittinghoff, M. Hermann, C. Hoaglan, A. Iyer, L. Jones II, I. Jovanovic, A. Komashko, O. Landen, Z. Liao, W. Molander, S. Mitchell, E. Moses, N. Nielsen, H.-H. Nguyen, J. Nissen, S. Payne, D. Pennington, L. Risinger, M. Rushford, K. Skulina, M. Spaeth, B. Stuart, G. Tietbohl, and B. Wattellier, “An overview of LLNL high-energy short-pulse technology for advanced radiography of laser fusion experiments,” Nucl. Fusion 44, S266–S275 (2004). [CrossRef]
  7. R. Tommasini, H. S. Park, P. Patel, B. Maddox, S. Le Pape, S. P. Hatchett, B. A. Remington, M. H. Key, N. Izumi, M. Tabak, J. A. Koch, O. L. Landen, D. Hey, A. MacKinnon, J. Seely, G. Holland, L. Hudson, and C. Szabo, “Development of Compton radiography using high-Z backlighters produced by ultra-intense lasers,” AIP Conf. Proc. 926, 248–258 (2007). [CrossRef]
  8. H.-S. Park, B. R. Maddox, E. Giraldez, S. P. Hatchett, L. T. Hudson, N. Izumi, M. H. Key, S. Le Pape, A. J. MacKinnon, A. G. MacPhee, P. K. Patel, T. W. Phillips, B. A. Remington, J. F. Seely, R. Tommasini, R. Town, J. Workman, and E. Brambrink, “High-resolution 17−75 keV backlighters for high energy density experiments,” Phys. Plasmas 15, 072705 (2008). [CrossRef]
  9. “Advanced radiography: laser-based X-rays and Gamma-rays,” https://lasers.llnl.gov/programs/psa/advanced_radiography/.
  10. C. Haefner, J. Heebner, J. Dawson, S. Fochs, M. Shverdin, J. K. Crane, V. K. Kanz, J. Halpin, H. Phan, R. Sigurdsson, W. Brewer, J. Britten, G. Brunton, W. Clark, M. J. Messerly, J. D. Nissen, H. Nguyen, B. Shaw, R. Hackel, M. Hermann, G. Tietbohl, C. W. Siders, and C. P. J. Barty, “Characterization of the advanced radiographic capability front end on NIF,” 2009 UFO/HFSW Conf. Proc. (2009).
  11. J. Qiao, A. Kalb, M. J. Guardalben, G. King, D. Canning, and J. H. Kelly, “Large-aperture grating tiling by interferometry for petawatt chirped-pulse-amplification systems,” Opt. Express 15, 9562–9574 (2007). [CrossRef] [PubMed]
  12. N. Blanchot, G. Marre, J. Néauport, E. Sibé, C. Rouyer, S. Montant, A. Cotel, C. Le Blanc, and C. Sauteret, “Synthetic aperture compression scheme for a multipetawatt high-energy laser,” Appl. Opt. 45, 6013–6021 (2006). [CrossRef] [PubMed]
  13. N. Blanchot, E. Bar, G. Behar, C. Bellet, D. Bigourd, F. Boubault, C. Chappuis, H. Coïc, C. Damiens-Dupont, O. Flour, O. Hartmann, L. Hilsz, E. Hugonnot, E. Lavastre, J. Luce, E. Mazataud, J. Neauport, S. Noailles, B. Remy, F. Sautarel, M. Sautet, and C. Rouyer, “Experimental demonstration of a synthetic aperture compression scheme for multi-Petawatt high-energy lasers,” Opt. Express 18, 10088–10097 (2010). [CrossRef] [PubMed]
  14. K. L. Baker, D. Homoelle, E. Utterback, E. A. Stappaerts, C. W. Siders, and C. P. J. Barty, “Interferometric adaptive optics testbed for laser pointing, wave-front control and phase,” Opt. Express 17, 16696–16709 (2009). [CrossRef] [PubMed]
  15. Z. Bor, “Distortion of femtosecond laser pulses in lenses and lens systems,” J. Mod. Opt. 35, 1907–1918 (1988). [CrossRef]
  16. J. Néauport, N. Blanchot, C. Rouyer, and C. Sauteret, “Chromatism compensation of the PETAL multipetawatt high-energy laser,” Appl. Opt. 46, 1568–1574 (2007). [CrossRef] [PubMed]
  17. See, for example, S. Backus, C. G. Durfee, M. M. Murnane, and H. C. Kapteyn, “High power ultrafast lasers,” Rev. Sci. Instrum. 69, 1207–1223 (1998). [CrossRef]
  18. See, for example, D. J. Griffiths, Introduction to Electrodynamics, 2nd ed. (Prentice-Hall, 1989), p. 360.
  19. E. B. Treacy, “Optical pulse compression with diffraction gratings,” IEEE J. Quantum Electron. 5, 454–458 (1969). [CrossRef]
  20. C. L. Haefner, J. K. Crane, J. Halpin, and C. W. Siders, Lawrence Livermore National Laboratory, 7000 East Ave. L-470, Livermore, CA 94550, USA are preparing a manuscript called “Dispersion balance system for the Advanced Radiographic Capability.”
  21. See, for example, G. P. Agraway, “Higher-order dispersion,” in Nonlinear Fiber Optics, 2nd ed. (Academic, 1995), pp. 75–81, and references therein.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited