OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 50, Iss. 4 — Feb. 1, 2011
  • pp: A11–A19

Automated broad tuning of difference frequency sources for spectroscopic studies

Michele Gianella and Markus W. Sigrist  »View Author Affiliations


Applied Optics, Vol. 50, Issue 4, pp. A11-A19 (2011)
http://dx.doi.org/10.1364/AO.50.000A11


View Full Text Article

Enhanced HTML    Acrobat PDF (1045 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Transmission spectroscopy over large spectral ranges ( > 100 cm 1 ) generally requires a reference measurement to be taken separately from the sample scan. The ratio of the two measurements (i.e., the transmittance) is therefore susceptible to baseline changes that occur between the recording of the two spectra. The origins of relatively strong baseline changes ( 1 % ) of a difference-frequency- generation-based laser spectrometer (tuning range 2900 3144 cm 1 , 150 μW average power) were investigated and a method for minimizing them by improving reproducibility and reducing measurement time is presented. The new method was tested for a gas mixture and the sensitivity for broad absorption features was determined as 5 × 10 3 minimum measurable absorbance for a total scan duration of 70 min .

© 2011 Optical Society of America

OCIS Codes
(300.1030) Spectroscopy : Absorption
(300.6340) Spectroscopy : Spectroscopy, infrared
(300.6360) Spectroscopy : Spectroscopy, laser
(190.4223) Nonlinear optics : Nonlinear wave mixing

ToC Category:
LASER APPLICATIONS TO CHEMICAL, SECURITY, AND ENVIRONMENTAL ANALYSIS

History
Original Manuscript: June 9, 2010
Revised Manuscript: September 10, 2010
Manuscript Accepted: September 10, 2010
Published: October 14, 2010

Citation
Michele Gianella and Markus W. Sigrist, "Automated broad tuning of difference frequency sources for spectroscopic studies," Appl. Opt. 50, A11-A19 (2011)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-50-4-A11


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. H. I. Schiff, G. I. Mackay, and J. Bechara, “The use of tunable diode-laser absorption-spectroscopy for atmospheric measurements,” Res. Chem. Intermed. 20, 525–556 (1994). [CrossRef]
  2. C. L. Schiller, S. Locquiao, T. J. Johnson, and G. W. Harris, “Atmospheric measurements of HONO by tunable diode laser absorption spectroscopy,” J. Atmos. Chem. 40, 275–293 (2001). [CrossRef]
  3. R. Grilli, L. Ciaffoni, G. Hancock, R. Peverall, G. A. D. Ritchie, and A. J. Orr-Ewing, “Mid-infrared ethene detection using difference frequency generation in a quasi-phase-matched LiNbO3 waveguide,” Appl. Opt. 48, 5696–5703 (2009). [CrossRef] [PubMed]
  4. A. Karpf and G. N. Rao, “Absorption and wavelength modulation spectroscopy of NO2 using a tunable, external cavity continuous wave quantum cascade laser,” Appl. Opt. 48, 408–413 (2009). [CrossRef] [PubMed]
  5. D. Richter, B. P. Wert, A. Fried, P. Weibring, J. G. Walega, J. W. C. White, B. H. Vaughn, and F. K. Tittel, “High-precision CO2 isotopologue spectrometer with a difference-frequency-generation laser source,” Opt. Lett. 34, 172–174 (2009). [CrossRef] [PubMed]
  6. E. Kerstel and L. Gianfrani, “Advances in laser-based isotope ratio measurements: selected applications,” Appl. Phys. B 92, 439–449 (2008). [CrossRef]
  7. H. Waechter, J. Mohn, B. Tuzson, L. Emmenegger, and M. W. Sigrist, “Determination of N2O isotopomers with quantum cascade laser based absorption spectroscopy,” Opt. Express 16, 9239–9244 (2008). [CrossRef] [PubMed]
  8. C. Dyroff, D. Fuetterer, and A. Zahn, “Compact diode-laser spectrometer ISOWAT for highly sensitive airborne measurements of water-isotope ratios,” Appl. Phys. B 98, 537–548(2010). [CrossRef]
  9. K. R. Parameswaran, D. I. Rosen, M. G. Allen, A. M. Ganz, and T. H. Risby, “Off-axis integrated cavity output spectroscopy with a mid-infrared interband cascade laser for real-time breath ethane measurements,” Appl. Opt. 48, B73–B79(2009). [CrossRef] [PubMed]
  10. M. Nägele and M. W. Sigrist, “Mobile laser spectrometer with novel resonant multipass photoacoustic cell for trace-gas sensing,” Appl. Phys. B 70, 895–901 (2000).
  11. A. Elia, P. M. Lugarà, C. Di Franco, and V. Spagnolo, “Photoacoustic techniques for trace gas sensing based on semiconductor laser sources,” Sensors 9, 9616–9628 (2009). [CrossRef]
  12. B. G. Ageev, Y. N. Ponomarev, and V. A. Sapozhnikova, “Photoacoustic analysis of CO2 content in annual tree rings,” J. Appl. Spectrosc. 76, 452–455 (2009). [CrossRef]
  13. S. Schilt, A. A. Kosterev, and F. K. Tittel, “Performance evaluation of a near infrared QEPAS based ethylene sensor,” Appl. Phys. B 95, 813–824 (2009). [CrossRef]
  14. D. S. Bomse, A. C. Stanton, and J. A. Silver, “Frequency-modulation and wavelength modulation spectroscopies: comparison of experimental methods using a lead-salt diode laser,” Appl. Opt. 31, 718–731 (1992). [CrossRef] [PubMed]
  15. K. L. McNesby, R. R. Skaggs, A. W. Miziolek, M. Clay, S. H. Hoke, and C. S. Miser, “Diode-laser-based measurements of hydrogen fluoride gas during chemical suppression of fires,” Appl. Phys. B 67, 443–447 (1998). [CrossRef]
  16. M. E. Trudeau, P. Chen, G. D. Garcia, L. W. Hollberg, and P. P. Tans, “Stable isotopic analysis of atmospheric methane by infrared spectroscopy by use of diode laser difference-frequency generation,” Appl. Opt. 45, 4136–4141 (2006). [CrossRef] [PubMed]
  17. Y. He and B. J. Orr, “Detection of trace gases by rapidly-swept continuous-wave cavity ringdown spectroscopy: pushing the limits of sensitivity,” Appl. Phys. B 85, 355–364 (2006). [CrossRef]
  18. M. W. Sigrist, R. Bartlome, D. Marinov, J. M. Rey, D. E. Vogler, and H. Waechter, “Trace gas monitoring with infrared laser-based detection schemes,” Appl. Phys. B 90, 289–300 (2008). [CrossRef]
  19. K. Stamyr, O. Vaittinen, J. Jaakola, J. Guss, M. Metsala, G. Johanson, and L. Halonen, “Background levels of hydrogen cyanide in human breath measured by infrared cavity ring down spectroscopy,” Biomarkers 14, 285–291 (2009). [CrossRef] [PubMed]
  20. S. D. Saliba and R. E. Scholten, “Linewidths below 100 kHz with external cavity diode lasers,” Appl. Opt. 48, 6961–6966(2009). [CrossRef] [PubMed]
  21. V. V. Vassiliev, S. A. Zibrov, and V. L. Velichansky, “Compact extended-cavity diode laser for atomic spectroscopy and metrology,” Rev. Sci. Instrum. 77, 013102 (2006). [CrossRef]
  22. M. C. Phillips, M. S. Taubman, B. E. Bernacki, B. D. Cannon, J. T. Schiffern, and T. L. Myers, “Design and performance of a sensor system for detection of multiple chemicals using an external cavity quantum cascade laser,” Proc. SPIE 7608, 76080D (2010). [CrossRef]
  23. T. Day, M. Weida, D. Arnone, and M. Pushkarsky, “Recent advances in compact broadly tunable external-cavity quantum cascade lasers (ECqcL),” Proc. SPIE 7319, 73190F (2009). [CrossRef]
  24. A. Hugi, R. Terazzi, Y. Bonetti, A. Wittmann, M. Fischer, M. Beck, J. Faist, and E. Gini, “External cavity quantum cascade laser tunable from 7.6 to 11.4 μm,” Appl. Phys. Lett. 95, 061103 (2009). [CrossRef]
  25. G. Wysocki, R. Lewicki, R. F. Curl, F. K. Tittel, L. Diehl, F. Capasso, M. Troccoli, G. Hofler, D. Bour, S. Corzine, R. Maulini, M. Giovannini, and J. Faist, “Widely tunable mode-hope free external cavity quantum cascade lasers for high resolution spectroscopy and chemical sensing,” Appl. Phys. B 92, 305–311 (2008). [CrossRef]
  26. D. J. M. Stothard, C. F. Rae, and M. H. Dunn, “An intracavity optical parametric oscillator with very high repetition rate and broad tunability based upon room temperature periodically poled MgO:LiNbO3 with fanned grating design,” IEEE J. Quantum Electron. 45, 256–263 (2009). [CrossRef]
  27. M. Vainio, J. Peltola, S. Persijn, F. J. M. Harren, and L. Halonen, “Singly resonant cw OPO with simple wavelength tuning,” Opt. Express 16, 11141–11146 (2008). [CrossRef] [PubMed]
  28. A. Berrou, M. Raybaut, A. Godard, and M. Lefebvre, “High-resolution photoacoustic and direct absorption spectroscopy of main greenhouse gases by use of a pulsed entangled cavity doubly resonant OPO,” Appl. Phys. B 98, 217–230 (2010). [CrossRef]
  29. R. Bartlome, J. M. Rey, and M. W. Sigrist, “Vapor phase infrared laser spectroscopy: from gas sensing to forensic urinalysis,” Anal. Chem. 80, 5334–5341 (2008). [CrossRef] [PubMed]
  30. J. Cousin, W. Chen, D. Bigourd, M. Formentin, and S. Kassi, “Telecom-grade fiber laser-based difference-frequency generation and ppb-level detection of benzene vapor in air around 3 μm,” Appl. Phys. B 97, 919–929 (2009). [CrossRef]
  31. V. L. Kasyutich, R. J. Holdsworth, and P. A. Martin, “Mid-infrared laser absorption spectrometers based upon all-diode laser difference frequency generation and a room temperature quantum cascade laser for the detection of CO, N2O and NO,” Appl. Phys. B 92, 271–279 (2008). [CrossRef]
  32. W. Denzer, G. Hancock, A. Hutchinson, M. Munday, R. Peverall, and G. A. D. Ritchie, “Mid-infrared generation and spectroscopy with a PPLN ridge waveguide,” Appl. Phys. B 86, 437–441(2007). [CrossRef]
  33. I. Vurgaftman, C. L. Canedy, C. S. Kim, M. Kim, W. W. Bewley, J. R. Lindle, J. Abell, and J. R. Meyer, “Mid-infrared interband cascade lasers operating at ambient temperatures,” New J. Phys. 11, 125015 (2009). [CrossRef]
  34. S. Y. Zhang, D. G. Revin, J. W. Cockburn, K. Kennedy, A. B. Krysa, and M. Hopkinson, “λ∼3.1 μm room temperature InGaAs/AlAsSb/InP quantum cascade lasers,” Appl. Phys. Lett. 94, 031106 (2009). [CrossRef]
  35. J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev. 127, 1918–1939 (1962). [CrossRef]
  36. M. J. Weber, Handbook of Optical Materials (CRC Press, 2003).
  37. D. A. Roberts, “Simplified characterization of uniaxial and biaxial nonlinear optical-crystals—a plea for standardization of nomenclature and conventions,” IEEE J. Quantum Electron. 28, 2057–2074 (1992). [CrossRef]
  38. C. Fischer and M. W. Sigrist, “Mid-IR difference frequency generation,” in Solid-State Mid-Infrared Laser Sources, I.T.Sorokina and K.L.Vodopyanov, eds. (Springer, 2003), pp. 97–140.
  39. D. J. Bamford, D. J. Cook, S. J. Sharpe, and A. D. Van Pelt, “Widely tunable rapid-scanning mid-infrared laser spectrometer for industrial gas process stream analysis,” Appl. Opt. 46, 3958–3968 (2007). [CrossRef] [PubMed]
  40. P. Werle, R. Muecke, and F. Slemr, “The limits of signal averaging in atmospheric trace-gas monitoring by tunable diode-laser absorption-spectroscopy (TDLAS),” Appl. Phys. B 57, 131–139 (1993). [CrossRef]
  41. R. Bartlome, M. Baer, and M. W. Sigrist, “High-temperature multipass cell for infrared spectroscopy of heated gases and vapors,” Rev. Sci. Instrum. 78, 013110 (2007). [CrossRef] [PubMed]
  42. A. J. Phillips and P. A. Hamilton, “Improved detection limits in Fourier transform spectroscopy from a maximum entropy approach to baseline estimation,” Anal. Chem. 68, 4020–4025 (1996). [CrossRef]
  43. M. Asobe, O. Tadanaga, T. Yanagawa, H. Itoh, and H. Suzuki, “Reducing photorefractive effect in periodically poled ZnO- and MgO-doped LiNbO3 wavelength converters,” Appl. Phys. Lett. 78, 3163–3165 (2001). [CrossRef]
  44. Y. Kong, J. Wen, and H. Wang, “New doped lithium niobate crystal with high resistance to photorefraction—LiNbO3:In,” Appl. Phys. Lett. 66, 280–281 (1995). [CrossRef]
  45. J. M. Rey, D. Schramm, D. Hahnloser, D. Marinov, and M. W. Sigrist, “Spectroscopic investigation of volatile compounds produced during thermal and radiofrequency bipolar cautery on porcine liver,” Meas. Sci. Technol. 19, 075602 (2008). [CrossRef]
  46. M. Gianella and M. W. Sigrist, “Infrared spectroscopy on smoke produced by cauterization of animal tissue,” Sensors 10, 2694–2708 (2010). [CrossRef]
  47. W. L. Barrett and S. M. Garber, “Surgical smoke—a review of the literature—Is this just a lot of hot air?,” Surg. Endosc. 17, 979–987 (2003). [CrossRef] [PubMed]
  48. T. Katoh and K. Ikeda, “The minimum alveolar concentration (MAC) of sevoflurane in humans,” Anesthesiology 66, 301–303 (1987). [CrossRef] [PubMed]
  49. A. Hugi, R. Maulini, and J. Faist, “External cavity quantum cascade laser,” Semicond. Sci. Technol. 25, 083001 (2010). [CrossRef]
  50. J. Devenson, O. Cathabard, R. Teissier, and A. N. Baranov, “High temperature operation of λ≈3.3 μm quantum cascade lasers,” Appl. Phys. Lett. 91, 141106 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited