OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 50, Iss. 4 — Feb. 1, 2011
  • pp: A49–A59

Laser-induced incandescence measurements of soot in turbulent pool fires

Kraig Frederickson, Sean P. Kearney, and Thomas W. Grasser  »View Author Affiliations

Applied Optics, Vol. 50, Issue 4, pp. A49-A59 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (985 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present what we believe to be the first application of the laser-induced incandescence (LII) technique to large-scale fire testing. The construction of an LII instrument for fire measurements is presented in detail. Soot volume fraction imaging from 2 m diameter pool fires burning blended toluene/methanol liquid fuels is demonstrated along with a detailed report of measurement uncertainty in the challenging pool fire environment. Our LII instrument relies upon remotely located laser, optical, and detection systems and the insertion of water-cooled, fiber-bundle-coupled collection optics into the fire plume. Calibration of the instrument was performed using an ethylene/air laminar diffusion flame produced by a Santoro-type burner, which allowed for the extraction of absolute soot volume fractions from the LII images. Single-laser-shot two-dimensional images of the soot layer structure are presented with very high volumetric spatial resolution of the order of 10 5 cm 3 . Probability density functions of the soot volume fraction fluctuations are constructed from the large LII image ensembles. The results illustrate a highly intermittent soot fluctuation field with potentially large macroscale soot structures and clipped soot probability densities.

© 2011 Optical Society of America

OCIS Codes
(120.0120) Instrumentation, measurement, and metrology : Instrumentation, measurement, and metrology
(120.1740) Instrumentation, measurement, and metrology : Combustion diagnostics

ToC Category:

Original Manuscript: August 2, 2010
Revised Manuscript: October 22, 2010
Manuscript Accepted: October 24, 2010
Published: December 1, 2010

Kraig Frederickson, Sean P. Kearney, and Thomas W. Grasser, "Laser-induced incandescence measurements of soot in turbulent pool fires," Appl. Opt. 50, A49-A59 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. K. A. Jensen, J. M. Suo-Anttila, and L. G. Blevins, “Measurement of soot morphology, chemistry, and optical properties in the visible and near-infrared spectrum in the flame zone and overfire region of large JP-8 pool fires,” Combust. Sci. Technol. 179, 2453–2487 (2007). [CrossRef]
  2. A. C. Eckbreth, Laser Diagnostics for Combustion Temperature and Species (Gordon & Breach, 1996).
  3. K. Kohse-Höinghaus and J. B. Jeffries, Applied Combustion Diagnostics (Taylor & Francis, 2002).
  4. S. R. Tieszen, T. J. O’Hern, E. J. Weckman, and R. W. Schefer, “Experimental study of the effect of fuel mass flux on a 1 m-diameter methane fire and comparison with a hydrogen fire,” Combust. Flame 139, 126–141 (2004). [CrossRef]
  5. L. A. Gritzo, Y. R. Sivathanu, and W. Gill, “Transient measurement of radiative properties, soot volume fraction, and soot temperature in a large pool fire,” Combust. Sci. Technol. 139, 113–136 (1998). [CrossRef]
  6. J. J. Murphy and C. R. Shaddix, “Soot property measurements in a two-meter diameter JP-8 pool fire,” Combust. Sci. Technol. 178, 865–894 (2006). [CrossRef]
  7. S. P. Kearney, “Temporally resolved radiation spectra from a sooting turbulent pool fire,” in Proceedings of the International Mechanical Engineering Congress and Exposition (ASME, 2001), pp. 137–140.
  8. S. P. Kearney, K. Frederickson, and T. W. Grasser, “Dual-pump coherent anti-Stokes Raman scattering thermometry in a sooting turbulent pool fire,” Proc. Combust. Inst. 32, 871–878(2009). [CrossRef]
  9. K. Frederickson, S. P. Kearney, A. Luketa, J. C. Hewson, and T. W. Grasser, “Dual-pump CARS measurements of temperature and oxygen in a turbulent methanol-fueled pool fire,” Combust. Sci. Technol. 182, 941–959 (2010). [CrossRef]
  10. R. J. Santoro and C. R. Shaddix, “Laser-induced incandescence,” in Applied Combustion Diagnostics, K.K.Höinghaus and J.B.Jeffries, eds. (Taylor & Francis, 2002), pp. 252–286.
  11. B. Quay, T. W. Lee, T. Ni, and R. J. Santoro, “Spatially resolved measurements of soot volume fraction using laser-induced incandescence,” Combust. Flame 97, 384–392 (1994). [CrossRef]
  12. R. L. VanderWal and K. J. Weiland, “Laser-induced incandescence: development and characterization towards a measurement of soot-volume fraction,” Appl. Phys. B 59, 445–452(1994). [CrossRef]
  13. R. L. VanderWal, K. A. Jensen, and M. Y. Choi, “Simultaneous laser-induced emission of soot and polycyclic aromatic hydrocarbons within a gas-jet diffusion flame,” Combust. Flame 109, 399–414 (1997). [CrossRef]
  14. C. R. Shaddix and K. C. Smyth, “Laser-induced incandescence measurements of soot production in steady and flickering methane, propane, and ethylene diffusion flames,” Combust. Flame 107, 418–452 (1996). [CrossRef]
  15. P. O. Witze, S. Hochgreb, D. Kayes, H. A. Michelsen, and C. R. Shaddix, “Time-resolved laser-induced incandescence and laser elastic-scattering measurements in a propane diffusion flame,” Appl. Opt. 40, 2443–2452 (2001). [CrossRef]
  16. T. Ni, J. A. Pinson, S. Gupta, and R. J. Santoro, “Two-dimensional imaging of soot volume fraction by the use of laser-induced incandescence,” Appl. Opt. 34, 7083–7091(1995). [CrossRef] [PubMed]
  17. M. A. Mikofski, T. C. Williams, C. R. Shaddix, A. C. Fernandez-Pello, and L. G. Blevins, “Structure of laminar sooting inverse diffusion flames,” Combust. Flame 149, 463–478 (2007). [CrossRef]
  18. T. L. Henriksen, G. J. Nathan, Z. T. Alwahabi, N. Qamar, T. A. Ring, and E. G. Eddings, “Planar measurements of soot volume fraction and OH in a JP-8 pool fire,” Combust. Flame 156, 1480–1492 (2009). [CrossRef]
  19. Y. Xin and J. P. Gore, “Two-dimensional soot distributions in buoyant turbulent fires,” Proc. Combust. Inst. 30, 719–726(2005). [CrossRef]
  20. T. J. O’Hern, E. J. Weckman, A. L. Gerhart, S. R. Tieszen, and R. W. Schefer, “Experimental study of a turbulent buoyant helium plume,” J. Fluid Mech. 544, 143–171 (2005). [CrossRef]
  21. F. Goulay, L. Nemes, P. E. Schrader, and H. A. Michelsen, “Spontaneous emission from C2(dΠ3g) and C3(AΠ1u) during laser irradiation of soot particles,” Mol. Phys. 108, 1013–1025 (2010). [CrossRef]
  22. R. J. Santoro, H. G. Semerjian, and R. A. Dobbins, “Soot particle measurements in diffusion flames,” Combust. Flame 51, 203–218 (1983). [CrossRef]
  23. P. S. Greenberg and J. C. Ku, “Soot volume fraction imaging,” Appl. Opt. 36, 5514–5522 (1997). [CrossRef] [PubMed]
  24. N. H. Qamar, Z. T. Alwahabi, Q. N. Chan, G. J. Nathan, D. Roekaerts, and K. D. King, “Soot volume fraction in a piloted turbulent jet nonpremixed flame of natural gas,” Combust. Flame 156, 1339–1347 (2009). [CrossRef]
  25. J. Zerbs, K. P. Geigle, O. Lammel, J. Hader, R. Stirn, R. Hadef, and W. Meier, “The influence of wavelength in extinction measurements and beam steering in laser-induced incandescence measurements in sooting flames,” Appl. Phys. B 96, 683–694(2009). [CrossRef]
  26. T. C. Williams, C. R. Shaddix, K. A. Jensen, and J. M. Suo-Anttila, “Measurements of the dimensionless extinction coefficient of soot within laminar diffusion flames,” Int. J. Heat Mass Transfer 50, 1616–1630 (2007). [CrossRef]
  27. W. H. Dalzell and A. F. Sarofim, “Optical constants of soot and their application to heat-flux calculations,” J. Heat Transfer 91, 100–104 (1969). [CrossRef]
  28. C. M. Sorensen, W. Kim, D. Fry, D. Shi, and A. Chakrabarti, “Observation of soot superaggregates with a fractal dimension of 2.6 in laminar acetylene/air diffusion flames,” Langmuir 19, 7560–7563 (2003). [CrossRef]
  29. A. J. Ricks, J. C. Hewson, A. R. Kerstein, J. P. Gore, S. R. Tieszen, and W. T. Ashhurst, “A spatially developing one-dimensional turbulence (ODT) study of soot and enthalpy evolution in meter-scale buoyant turbulent flames,” Combust. Sci. Technol. 182, 60–101 (2010). [CrossRef]
  30. R. J. Moffat, “Describing the uncertainties in experimental results,” Exp. Therm. Fluid Sci. 1, 3–17 (1988). [CrossRef]
  31. K. Frederickson, S. P. Kearney, and T. W. Grasser, “Quantitative laser-induced incandescence measurements of soot in turbulent pool fires,” in 48th AIAA Aerospace Sciences Meeting, (AIAA, 2010), paper AIAA-2010-300.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited