OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 50, Iss. 4 — Feb. 1, 2011
  • pp: A68–A73

Detecting localized trace species in air using radar resonance-enhanced multi-photon ionization

Arthur Dogariu and Richard B. Miles  »View Author Affiliations

Applied Optics, Vol. 50, Issue 4, pp. A68-A73 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (834 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A microwave-scattering-based resonance-enhanced multi-photon ionization technique is used to detect molecular species such as NO, CO, Xe, and Ar in pure form, and for standoff detection of trace species in atmospheric pressure air. In this paper,the spectra, dynamics, and the detection limits of trace species in air are studied. We demonstrate 10 m scale standoff detection of NO, and show that the system has a linear response down to the parts in 10 9 NO levels in ambient air.

© 2011 Optical Society of America

OCIS Codes
(190.4180) Nonlinear optics : Multiphoton processes
(280.0280) Remote sensing and sensors : Remote sensing and sensors
(280.4788) Remote sensing and sensors : Optical sensing and sensors
(280.5395) Remote sensing and sensors : Plasma diagnostics

ToC Category:

Original Manuscript: August 4, 2010
Manuscript Accepted: October 22, 2010
Published: December 6, 2010

Arthur Dogariu and Richard B. Miles, "Detecting localized trace species in air using radar resonance-enhanced multi-photon ionization," Appl. Opt. 50, A68-A73 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. S. Moore, “Instrumentation for trace detection of high explosives,” Rev. Sci. Instrum. 75, 2499–2512 (2004). [CrossRef]
  2. D. S. Moore, “Recent advances in trace explosives detection instrumentation,” Sens. Imaging 8, 9–38 (2007). [CrossRef]
  3. D.R.Crosley, ed., Laser Probes for Combustion Chemistry, ACS Symposium 134 (American Chemical Society, 1980). [CrossRef]
  4. A. Owyoung, “Coherent Raman gain spectroscopy using cw laser sources,” IEEE J. Quantum Electron. QE-14, 192–203(1978). [CrossRef]
  5. D. G. Murdock, S. V. Stearns, R. T. Lines, D. Lenz, D. M. Brown, and C. R. Philbrick, “Applications of real-world gas detection: Airborne Natural Gas Emission Lidar (ANGEL) system,” J. Appl. Remote Sens. 2, 023518 (2008). [CrossRef]
  6. L. Dudragne, P. Adam, and J. Amouroux, “Time-resolved laser-induced breakdown spectroscopy: application for qualitative and quantitative detection of fluorine, chlorine, sulfur, and carbon in air,” Appl. Spectrosc. 52, 1321–1327(1998). [CrossRef]
  7. J. L. Gottfried, F. C. De Lucia, C. A. Munson, and A. W. Miziolek, “Standoff detection of chemical and biological threats using laser-induced breakdown spectroscopy,” Appl. Spectrosc. 62, 353–363 (2008). [CrossRef] [PubMed]
  8. W. D. Kulatilaka, C. Ning, S. V. Naik, N. M. Laurendeau, R. P. Lucht, J. P. Kuehner, S. Roy, and J. R. Gord, “Measurement of nitric oxide concentrations in flames by using electronic-resonance-enhanced coherent anti-Stokes Raman scattering,” Opt. Lett. 31, 3357–3359 (2006). [CrossRef] [PubMed]
  9. V. Kocharovsky, S. Cameron, K. Lehmann, R. Lucht, R. Miles, Y. Rostovtsev, W. Warren, G. R. Welch, and M. O. Scully, “Gain-swept super-radiance applied to the stand-off detection of trace impurities in the atmosphere,” Proc. Natl. Acad. Sci. USA 102, 7806–7811 (2005). [CrossRef] [PubMed]
  10. R. B. Miles, Z. Zhang, S. H. Zaidi, and M. N. Shneider, “Microwave scattering from laser ionized molecules: a new approach to nonintrusive diagnostics,” AIAA J. 45, 513–515(2007). [CrossRef]
  11. T. A. Cool, “Quantitative measurement of NO density by resonance three-photon ionization,” Appl. Opt. 23, 1559–1572(1984). [CrossRef] [PubMed]
  12. M. N. Schneider and R. B. Miles, “Microwave diagnostics of small plasma objects,” J. Appl. Phys. 98, 0033301 (2006). [CrossRef]
  13. W. P. Hess, K. A. H. German, R. A. Bradley, D. P. Taylor, and K. M. Beck, “Laser desorption of NO and CO from sodium nitrate and calcium carbonate crystals,” in IEEE/LEOS 1996 Summer Topical Meetings (1996), pp. 9–10.
  14. Z. Zhang, M. N. Shneider, and R. B. Miles, “Coherent microwave Rayleigh scattering from resonance-enhanced multiphoton ionization in argon,” Phys. Rev. Lett. 98, 265005 (2007). [CrossRef] [PubMed]
  15. A. Dogariu, M. N. Shneider, and R. B. Miles, “Direct measurement of the electron loss rate in air,” in Quantum Electronics and Laser Science Conference (QELS), OSA Technical Digest (Optical Society of America, 2010), paper JTuD2.
  16. Z. Zhang, S. Zaidi, C. Brennan, A. Dogariu, M. N. Shneider, and R. B. Miles, “Radar REMPI detection of NO2 by NO photo-fragments,” paper AIAA-2009-525 presented at the 47th AIAA Aerospace Sciences Meeting, Orlando, Fla., 5–9 January 2009.
  17. Y. Luo, Y. D. Cheng, H. Agren, R. Maripuu, W. Seibt, L. Ohlund, P. Ejeklint, B. Carman, K. Z. Xing, Y. Achiba, and K. Siegbahn, “Highly excited states of nitric oxide studied by high-resolution resonance-enhanced multiphoton ionization spectroscopy,” Chem. Phys. 153, 473–481 (1991). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited