OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 50, Iss. 4 — Feb. 1, 2011
  • pp: A74–A85

Dual quantum cascade laser trace gas instrument with astigmatic Herriott cell at high pass number

J. Barry McManus, Mark S. Zahniser, and David D. Nelson  »View Author Affiliations


Applied Optics, Vol. 50, Issue 4, pp. A74-A85 (2011)
http://dx.doi.org/10.1364/AO.50.000A74


View Full Text Article

Enhanced HTML    Acrobat PDF (1548 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We have developed and demonstrated a high-sensitivity trace gas instrument employing two mid- infrared quantum cascade lasers and an astigmatic Herriott sample cell with up to a 240 m path length. Several aspects of astigmatic Herriott cell optics have been addressed to enable operation at a high pass number (up to 554), including aberrations and pattern selection to minimize interference fringes. The new instrument design, based on the 200 m cell, can measure various atmospheric trace gases, depending on the installed lasers, with multiple trace gases measured simultaneously. Demonstrated concentration noise levels ( 1 s average) are 40 parts per trillion [(ppt) 10 12 ] for formaldehyde, 10 ppt for carbonyl sulfide, 110 ppt for hydrogen peroxide ( H 2 O 2 ), and 180 ppt for nitrous acid (HONO). High-precision measurements of nitrous oxide and methane have been recorded at the same time as high-sensitivity measurements of HONO and H 2 O 2 .

© 2011 Optical Society of America

OCIS Codes
(080.2740) Geometric optics : Geometric optical design
(120.6200) Instrumentation, measurement, and metrology : Spectrometers and spectroscopic instrumentation
(140.4780) Lasers and laser optics : Optical resonators
(300.1030) Spectroscopy : Absorption
(300.6340) Spectroscopy : Spectroscopy, infrared
(300.6360) Spectroscopy : Spectroscopy, laser

ToC Category:
LASER APPLICATIONS TO CHEMICAL, SECURITY, AND ENVIRONMENTAL ANALYSIS

History
Original Manuscript: August 4, 2010
Manuscript Accepted: September 13, 2010
Published: December 20, 2010

Citation
J. Barry McManus, Mark S. Zahniser, and David D. Nelson, "Dual quantum cascade laser trace gas instrument with astigmatic Herriott cell at high pass number," Appl. Opt. 50, A74-A85 (2011)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-50-4-A74


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. F. Curl, F. Capasso, C. Gmachl, A. A. Kosterev, J. B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett. 487, 1–18 (2010). [CrossRef]
  2. F. K. Tittel, Y. Bakhirkin, A. A. Kosterev, and G. Wysocki, “Recent advances in trace gas detection using quantum and interband cascade lasers,” Rev. Laser Eng. 34, 275–282 (2006).
  3. J. Röpcke, S. Welzel, N. Lang, F. Hempel, L. Gatilova, A. Rousseau, and P. B. Davies, “Diagnostic studies of molecular plasmas using mid-infrared semiconductor lasers,” Appl. Phys. B 92, 335–341 (2008). [CrossRef]
  4. C. R. Webster, G. J. Flesch, D. C. Scott, J. E. Swanson, R. D. May, W. S. Woodward, C. Gmachl, F. Capasso, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, and A. Y. Cho, “Quantum-cascade laser measurements of stratospheric methane and nitrous oxide,” Appl. Opt. 40, 321–326 (2001). [CrossRef]
  5. C. L. Schiller, H. Bozem, C. Gurk, U. Parchatka, R. Königstedt, G. W. Harris, J. Lelieveld, and H. Fisher, “Applications of quantum cascade lasers for sensitive trace gas measurements of CO, CH4, N2O, and HCHO,” Appl. Phys. B 92, 419–430(2008). [CrossRef]
  6. A. A. Kosterev, F. K. Tittel, R. Köhler, C. Gmachl, F. Capasso, D. L. Sivco, A. Y. Cho, S. Wehe, and M. G. Allen, “Thermoelectrically cooled quantum-cascade laser-based sensor for the continuous monitoring of ambient atmospheric carbon monoxide,” Appl. Opt. 41, 1169–1173 (2002). [CrossRef] [PubMed]
  7. W. H. Weber, J. T. Remillard, R. E. Chase, J. F. Richert, F. Capasso, C. Gmachl, A. L. Hutchinson, D. L. Sivco, J. N. Baillargeon, and A. Y. Cho, “Using a wavelength-modulated quantum cascade laser to measure NO concentrations in the parts-per-billion range for vehicle emissions certification,” Appl. Spectrosc. 56, 706–714 (2002). [CrossRef]
  8. A. A. Kosterev, R. F. Curl, F. K. Tittel, R. Köhler, C. Gmachl, F. Capasso, D. L. Sivco, and A. Y. Cho, “Transported automated ammonia sensor based on a pulsed thermoelectrically cooled QC-DFB laser,” Appl. Opt. 41, 573–578 (2002). [CrossRef] [PubMed]
  9. A. A. Kosterev, and F. K. Tittel, “Chemical sensors based on quantum cascade lasers,” IEEE J. Quantum Electron. 38, 582–591 (2002). [CrossRef]
  10. D. D. Nelson, J. H. Shorter, J. B. McManus, and M. S. Zahniser, “Sub-part-per-billion detection of nitric oxide in air using a thermoelectrically cooled mid-infrared quantum cascade laser spectrometer,” Appl. Phys. B 75, 343–350 (2002). [CrossRef]
  11. J. B. McManus, D. D. Nelson, J. H. Shorter, and M. S. Zahniser, “Quantum cascade lasers for open- and closed-path measurement of atmospheric trace gases,” Proc. SPIE 4817, 22–33(2002). [CrossRef]
  12. D. D. Nelson, J. B. McManus, S. Urbanski, S. Herndon, and M. S. Zahniser, “High precision measurements of atmospheric nitrous oxide and methane using thermoelectrically cooled mid-infrared quantum cascade lasers and detectors,” Spectrochim. Acta A 60, 3325–3335 (2004). [CrossRef]
  13. R. Jimenez, S. Herndon, J. H. Shorter, D. D. Nelson, J. B. McManus, and M. S. Zahniser, “Atmospheric trace gas measurements using a dual quantum-cascade laser mid-infrared absorption spectrometer,” Proc. SPIE 5738, 318–330(2005). [CrossRef]
  14. S. C. Herndon, M. S. Zahniser, D. D. Nelson, J. H. Shorter, J. B. McManus, R. Jiménez, C. Warneke, and J. A. de Gouw, “Airborne measurements of HCHO and HCOOH during the New England Air Quality Study 2004 using a pulsed quantum cascade laser spectrometer,” J. Geophys. Res. 112, D10S03(2007). [CrossRef]
  15. P. M. Chu, D. D. Nelson, M. S. Zahniser, J. B. McManus, Q. Shi, and J. C. Travis, “Towards realization of reactive gas amount of substance standards through spectroscopic measurements,” IEEE Trans. Instrum. Meas. 56, 305–308 (2007). [CrossRef]
  16. J. B. McManus, J. H. Shorter, D. D. Nelson, M. S. Zahniser, D. E. Glenn, and R. M. McGovern, “Pulsed quantum cascade laser instrument with compact design for rapid, high sensitivity measurements of trace gases in air,” Appl. Phys. B 92, 387–392 (2008). [CrossRef]
  17. D. D. Nelson, J. B. McManus, S. C. Herndon, M. S. Zahniser, B. Tuzson, and L. Emmenegger, “New method for isotopic ratio measurements of atmospheric carbon dioxide using a 4.3 µm pulsed quantum cascade laser,” Appl. Phys. B 90, 301–309 (2008). [CrossRef]
  18. B. Tuzson, J. Mohn, M. J. Zeeman, R. A. Werner, W. Eugster, M. S. Zahniser, D. D. Nelson, J. B. McManus, and L. Emmenegger, “High precision and continuous field measurements of δ13C and Δ18O in carbon dioxide with a cryogen-free QCLAS,” Appl. Phys. B 90, 415–458 (2008). [CrossRef]
  19. J. B. McManus, D. D. Nelson, and M. S. Zahniser, “Long-term continuous sampling of CO212, CO213 and C12O18O16 in ambient air with a quantum cascade laser spectrometer,” Isotopes Environ. Health Stud. 46, 49–63 (2010). [CrossRef] [PubMed]
  20. M. S. Zahniser, D. D. Nelson, J. B. McManus, S. Herndon, E. Wood, J. H. Shorter, B. Lee, G. Santoni, R. Jimenez, and B. Daube, “Infrared QC laser applications to field measurements of atmospheric trace gas sources and sinks in environmental research: enhanced capabilities using continuous wave QCLs,” Proc. SPIE 7222, 72220H (2009). [CrossRef]
  21. D. D. Nelson, J. B. McManus, S. C. Herndon, J. H. Shorter, M. S. Zahniser, S. Blaser, L. Hvozdara, A. Muller, M. Giovannini, and J. Faist, “Characterization of a near-room temperature, continuous-wave quantum cascade laser for long-term, unattended monitoring of nitric oxide in the atmosphere,” Opt. Lett. 31, 2012–2014 (2006). [CrossRef] [PubMed]
  22. J. B. McManus, D. D. Nelson, S. C. Herndon, J. H. Shorter, M. S. Zahniser, S. Blaser, L. Hvozdara, A. Muller, M. Giovannini, and J. Faist, “Comparison of CW and pulsed operation with a TE-cooled quantum cascade infrared laser for detection of nitric oxide at 1900 cm−1,” Appl. Phys. B 85, 235–241 (2006). [CrossRef]
  23. A. Fried, Y. Wang, C. Cantrell, B. Wert, J. Walega, B. Ridley, E. Atlas, R. Shetter, B. Lefer, M. T. Coffey, J. Hannigan, D. Blake, N. Blake, S. Meinardi, B. Talbot, J. Dibb, E. Scheuer, O. Wingenter, J. Snow, B. Heikes, and D. Ehhalt, “Tunable diode laser measurements of formaldehyde during the TOPSE 2000: distributions, trends, and model comparisons,” J. Geophys. Res. 108, 8365–8386 (2003). [CrossRef]
  24. D. Richter, A. Fried, B. P. Wert, J. G. Walega, and F. K. Tittel, “Development of a tunable mid-IR difference-frequency laser source for highly sensitive airborne trace gas detection,” Appl. Phys. B 75, 281–288 (2002). [CrossRef]
  25. Y. Q. Li, K. L. Demerjian, M. S. Zahniser, D. D. Nelson, J. B. McManus, and S. C. Herndon, “Measurement of formaldehyde, nitrogen dioxide, and sulfur dioxide at Whiteface Mountain using a dual tunable diode laser system,” J. Geophys. Res. 109, D16S08 (2004). [CrossRef]
  26. G. Wysocki, Y. Bakhirkin, S. So, F. K. Tittel, C. J. Hill, R. Q. Yang, and M. P. Fraser, “Dual interband cascade laser based trace-gas sensor for environmental monitoring,” Appl. Opt. 46, 8202–8210 (2007). [CrossRef] [PubMed]
  27. K. Stimler, D. Nelson, and D. Yakir, “High precision measurements of atmospheric concentrations and plant exchange rates of carbonyl sulfide (COS) using mid-IR quantum cascade laser,” Glob. Change Biol. 16, 2496–2503 (2010). [CrossRef]
  28. A. Fried, J. R. Drummond, B. Henry, and J. Fox, “Versatile integrated tunable diode laser system for high precision: application for ambient measurements of OCS,” Appl. Opt. 30, 1916–1932 (1991). [CrossRef] [PubMed]
  29. G. Wysocki, M. McCurdy, S. So, D. Weidmann, C. Roller, R. F. Curl, and F. K. Tittel, “Pulsed quantum-cascade laser-based sensor for trace-gas detection of carbonyl sulfide,” Appl. Opt. 43, 6040–6046 (2004). [CrossRef] [PubMed]
  30. J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264, 553–556 (1994). [CrossRef] [PubMed]
  31. C. Gmachl, F. Capasso, J. Faist, A. L. Hutchinson, A. Tredicucci, D. L. Sivco, J. N. Baillargeon, S. N. G. Chu, and A. Y. Cho, “Continuous-wave and high power pulsed operation of index-coupled distributed feedback quantum cascade laser at ∼8.5 μm,” Appl. Phys. Lett. 72, 1430–1432 (1998). [CrossRef]
  32. J. Faist, A. Tredicucci, F. Capasso, C. Sirtori, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, and A. Y. Cho, “High-power continuous-wave quantum cascade lasers,” IEEE J. Quantum Electron. 34, 336–343 (1998). [CrossRef]
  33. F. Capasso, C. Gmachl, R. Paiella, A. Tredicucci, A. L. Hutchinson, D. L. Sivco, J. N. Baillargeon, A. Y. Cho, and H. C. Liu, “New frontiers in quantum cascade lasers and applications,” IEEE J. Sel. Top. Quantum Electron. 6, 931–947 (2000). [CrossRef]
  34. C. Gmachl, F. Capasso, D. L. Sivco, and A. Y. Cho, “Recent progress in quantum cascade lasers and applications,” Rep. Prog. Phys. 64, 1533–1601 (2001). [CrossRef]
  35. M. Beck, D. Hofstetter, T. Aellen, J. Faist, U. Oesterle, M. Ilegems, E. Gini, and H. Melchior, “Continuous wave operation of a mid-infrared semiconductor laser at room temperature,” Science 295, 301–305 (2002). [CrossRef] [PubMed]
  36. D. R. Herriott, H. Kogelnik, and R. Kompfner, “Off axis paths in spherical mirror interferometers,” Appl. Opt. 3, 523–526(1964). [CrossRef]
  37. D. R. Herriott and H. J. Schulte, “Folded optical delay lines,” Appl. Opt. 4, 883–889 (1965). [CrossRef]
  38. J. B. McManus, P. L. Kebabian, and M. S. Zahniser, “Astigmatic mirror multiple pass absorption cells for long pathlength spectroscopy,” Appl. Opt. 34, 3336–3348 (1995). [CrossRef] [PubMed]
  39. J. B. McManus, “Paraxial matrix description of astigmatic and cylindrical mirror resonators with twisted axes for laser spectroscopy,” Appl. Opt. 46, 472–482 (2007). [CrossRef] [PubMed]
  40. L.-Y. Hao, S. Qiang, G.-R. Wu, L. Qi, D. Feng, and Q.-S. Zhu, “Cylindrical mirror multipass Lissajous system for laser photoacoustic spectroscopy,” Rev. Sci. Instrum. 73, 2079–3085(2002). [CrossRef]
  41. J. A. Silver, “Simple dense-pattern optical multipass cells,” Appl. Opt. 44, 6545–6556 (2005). [CrossRef] [PubMed]
  42. V. L. Kasyutich, “Laser beam patterns of an optical cavity formed by two twisted cylindrical mirrors,” Appl. Phys. B 96, 141–148 (2009). [CrossRef]
  43. J. B. McManus, M. S. Zahniser, D. D. Nelson, J. H. Shorter, S. Herndon, E. Wood, and Rick Wehr, “Application of QCL’s to high precision atmospheric trace gas measurements,” Opt. Eng. (to be published).
  44. http://www.esrl.noaa.gov/calnex/index.htm.
  45. L. S. Rothman, A. Barbe, D. Chris Benner, L. R. Brown, C. Camy-Peyret, M. R. Carleer, K. Chance, C. Clerbaux, V. Dana, V. M. Devi, A. Fayt, J.-M. Flaud, R. R. Gamache, A. Goldman, D. Jacquemart, K. W. Jucks, M. J. Lafferty, J. Y. Mandin, S. T. Massie, V. Nemtchinov, D. A. Newnham, A. Perrin, C. P. Rinsland, J. Schroeder, K. M. Smith, M. A. H. Smith, K. Tang, R. A. Toth, J. Vander Auwera, P. Varanasi, and K. Yoshino, “The HITRAN molecular spectroscopic database: edition of 2000 with updates through 2001,” J. Quant. Spectrosc. Radiat. Transfer 82, 5–44(2003). [CrossRef]
  46. P. Werle, R. Mucke, and F. Slemr, “The limits of signal averaging in atmospheric trace-gas monitoring by tunable diode-laser absorption spectroscopy (TDLAS),” Appl. Phys. B 57, 131–139 (1993). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited