OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 50, Iss. 4 — Feb. 1, 2011
  • pp: A90–A99

Real-time monitoring of benzene, toluene, and p-xylene in a photoreaction chamber with a tunable mid-infrared laser and ultraviolet differential optical absorption spectroscopy

Matthew T. Parsons, Ihor Sydoryk, Alan Lim, Thomas J. McIntyre, John Tulip, Wolfgang Jäger, and Karen McDonald  »View Author Affiliations

Applied Optics, Vol. 50, Issue 4, pp. A90-A99 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (730 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We describe the implementation of a mid-infrared laser-based trace gas sensor with a photoreaction chamber, used for reproducing chemical transformations of benzene, toluene, and p-xylene (BTX) gases that may occur in the atmosphere. The system performance was assessed in the presence of photoreaction products including aerosol particles. A mid-infrared external cavity quantum cascade laser (EC-QCL)—tunable from 9.41 9.88 μm ( 1012 1063 cm 1 )—was used to monitor gas phase concentrations of BTX simultaneously and in real time during chemical processing of these compounds with hydroxyl radicals in a photoreaction chamber. Results are compared to concurrent measurements using ultraviolet differential optical absorption spectroscopy (UV DOAS). The EC-QCL based system provides quantitation limits of approximately 200, 200, and 600 parts in 10 9 (ppb) for benzene, toluene, and p-xylene, respectively, which represents a significant improvement over our previous work with this laser system. Correspondingly, we observe the best agreement between the EC-QCL measurements and the UV DOAS measurements with benzene, followed by toluene, then p-xylene. Although BTX gas-detection limits are not as low for the EC-QCL system as for UV DOAS, an unidentified by-product of the photoreactions was observed with the EC-QCL, but not with the UV DOAS system.

© 2011 Optical Society of America

OCIS Codes
(010.1120) Atmospheric and oceanic optics : Air pollution monitoring
(120.6200) Instrumentation, measurement, and metrology : Spectrometers and spectroscopic instrumentation
(140.3600) Lasers and laser optics : Lasers, tunable
(300.6340) Spectroscopy : Spectroscopy, infrared
(300.6540) Spectroscopy : Spectroscopy, ultraviolet
(010.1030) Atmospheric and oceanic optics : Absorption

ToC Category:

Original Manuscript: June 28, 2010
Revised Manuscript: December 9, 2010
Manuscript Accepted: December 10, 2010
Published: January 26, 2011

Matthew T. Parsons, Ihor Sydoryk, Alan Lim, Thomas J. McIntyre, John Tulip, Wolfgang Jäger, and Karen McDonald, "Real-time monitoring of benzene, toluene, and p-xylene in a photoreaction chamber with a tunable mid-infrared laser and ultraviolet differential optical absorption spectroscopy," Appl. Opt. 50, A90-A99 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. G. R. Carmichael, A. Sandu, T. Chai, D. N. Daescu, E. M. Constantinescu, and Y. Tang, “Predicting air quality: Improvements through advanced methods to integrate models and measurements,” J. Comput. Phys. 227, 3540–3571 (2008). [CrossRef]
  2. M. Lippmann, Environmental Toxicants: Human Exposures and Their Health Effects (Wiley, 2009).
  3. “Interaction Profile for: Benzene, Toluene, Ethylbenzene, and Xylenes (BTEX),” (Agency for Toxic Substances and Disease Registry, 2004).
  4. J. Whysner, M. V. Reddy, P. M. Ross, M. Mohan, and E. A. Lax, “Genotoxicity of benzene and its metabolites,” Mutat. Res. 566, 99–130 (2004). [CrossRef] [PubMed]
  5. J. H. Seinfeld and S. N. Pandis, Atmospheric Chemistry and Physics: From Air Pollution to Climate Change (Wiley, 2006).
  6. N. L. Ng, J. H. Kroll, A. W. H. Chan, P. S. Chhabra, R. C. Flagan, and J. H. Seinfeld, “Secondary organic aerosol formation from m-xylene, toluene, and benzene,” Atmos. Chem. Phys. 7, 3909–3922 (2007). [CrossRef]
  7. M. Martín-Reviejo and K. Wirtz, “Is benzene a precursor for secondary organic aerosol?,” Environ. Sci. Technol. 39, 1045–1054 (2005). [CrossRef] [PubMed]
  8. B. J. Finlayson-Pitts and J. N. Pitts, Chemistry of the Upper and Lower Atmosphere: Theory, Experiments and Applications (Academic, 2000).
  9. J. G. Calvert, R. Atkinson, K. H. Becker, R. M. Kamens, J. H. Seinfeld, T. J. Wallington, and G. Yarwood, The Mechanisms of Atmospheric Oxidation of Aromatic Hydrocarbons (Oxford University Press, 2002).
  10. H. Skov, A. Lindskog, F. Palmgren, and C. S. Christensen, “An overview of commonly used methods for measuring benzene in ambient air,” Atmos. Environ. 35, S141–S148 (2001). [CrossRef]
  11. K. Badjagbo, S. Moore, and S. Sauve, “Real-time continuous monitoring methods for airborne VOCs,” Trends Anal. Chem. 26, 931–940 (2007). [CrossRef]
  12. Z. Bacsik, J. Mink, and G. Keresztury, “FTIR spectroscopy of the atmosphere Part 2. Applications,” Appl. Spectrosc. Rev. 40, 327–390 (2005). [CrossRef]
  13. R. J. Yokelson, R. Susott, D. E. Ward, J. Reardon, and D. W. T. Griffith, “Emissions from smoldering combustion of biomass measured by open-path Fourier transform infrared spectroscopy,” J. Geophys. Res. 102, 18865–18877 (1997). [CrossRef]
  14. H. M. Heise, U. Muller, A. G. Gartner, and N. Holscher, “Improved chemometric strategies for quantitative FTIR spectral analysis and applications in atmospheric open-path monitoring,” Field Anal. Chem. Technol. 5, 13–28 (2001). [CrossRef]
  15. J. M. C. Plane and A. Saiz-Lopez, “UV-visible differential optical absorption spectroscopy,” in Analytical Techniques for Atmospheric Measurement, D.E.Heard, ed. (Blackwell, 2006), pp. 147–188. [CrossRef]
  16. R. Volkamer, L. T. Molina, M. J. Molina, T. Shirley, and W. H. Brune, “DOAS measurement of glyoxal as an indicator for fast VOC chemistry in urban air,” Geophys. Res. Lett. 32, L08806 (2005). [CrossRef]
  17. R. Volkamer, T. Etzkorn, A. Geyer, and U. Platt, “Correction of the oxygen interference with UV spectroscopic (DOAS) measurements of monocyclic aromatic hydrocarbons in the atmosphere,” Atmos. Environ. 32, 3731–3747 (1998). [CrossRef]
  18. I. Sydoryk, A. Lim, W. Jäger, J. Tulip, and M. T. Parsons, “Detection of benzene and toluene gases using a midinfrared continuous-wave external cavity quantum cascade laser at atmospheric pressure,” Appl. Opt. 49, 945–949 (2010). [CrossRef] [PubMed]
  19. B. Klotz, S. Sorensen, I. Barnes, K. H. Becker, T. Etzkorn, R. Volkamer, U. Platt, K. Wirtz, and M. Martín-Reviejo, “Atmospheric oxidation of toluene in a large-volume outdoor photoreactor: In situ determination of ring-retaining product yields,” J. Phys. Chem. A 102, 10289–10299 (1998). [CrossRef]
  20. H. Takekawa, H. Minoura, and S. Yamazaki, “Temperature dependence of secondary organic aerosol formation by photo-oxidation of hydrocarbons,” Atmos. Environ. 37, 3413–3424 (2003). [CrossRef]
  21. W. P. L. Carter, D. R. Cocker, D. R. Fitz, I. L. Malkina, K. Bumiller, C. G. Sauer, J. T. Pisano, C. Bufalino, and C. Song, “A new environmental chamber for evaluation of gas-phase chemical mechanisms and secondary aerosol formation,” Atmos. Environ. 39, 7768–7788 (2005). [CrossRef]
  22. C. Song, K. Na, B. Warren, Q. Malloy, and D. R. Cocker, “Secondary organic aerosol formation from m-xylene in the absence of NOx,” Environ. Sci. Technol. 41, 7409–7416(2007). [CrossRef] [PubMed]
  23. S. M. Murphy, A. Sorooshian, J. H. Kroll, N. L. Ng, P. Chhabra, C. Tong, J. D. Surratt, E. Knipping, R. C. Flagan, and J. H. Seinfeld, “Secondary aerosol formation from atmospheric reactions of aliphatic amines,” Atmos. Chem. Phys. 7, 2313–2337 (2007). [CrossRef]
  24. J. B. McManus, P. L. Kebabian, and W. S. Zahniser, “Astigmatic mirror multipass absorption cells for long-path-length spectroscopy,” Appl. Opt. 34, 3336–3348(1995). [CrossRef] [PubMed]
  25. U. Platt, “Differential Optical Absorption Spectroscopy (DOAS),” in Air Monitoring by Spectroscopy Techniques, M.W.Sigrist, ed. (Wiley, 1994), pp. 27–83.
  26. S. W. Sharpe, T. J. Johnson, R. L. Sams, P. M. Chu, G. C. Rhoderick, and P. A. Johnson, “Gas-phase databases for quantitative infrared spectroscopy,” Appl. Spectrosc. 58, 1452–1461 (2004). [CrossRef] [PubMed]
  27. S. Fally, M. Carleer, and A. C. Vandaele, “UV Fourier transform absorption cross sections of benzene, toluene, meta-, ortho-, and para-xylene,” J. Quant. Spectrosc. Radiat. Transfer 110, 766–782 (2009). [CrossRef]
  28. D. A. Skoog, F. J. Holler, and T. A. Nieman, Principles of Instrumental Analysis (Brooks/Cole: Thomson Learning, 1998).
  29. D. C. Harris, Quantitative Chemical Analysis (W. H. Freeman, New York, 1999).
  30. H. J. L. Forstner, R. C. Flagan, and J. H. Seinfeld, “Secondary organic aerosol from the photooxidation of aromatic hydrocarbons: Molecular composition,” Environ. Sci. Technol. 31, 1345–1358 (1997). [CrossRef]
  31. D. F. Smith, T. E. Kleindienst, and C. D. McIver, “Primary product distributions from the reaction of OH with m-, p-xylene, 1,2,4- and 1,3,5-trimethylbenzene,” J. Atmos. Chem. 34, 339–364 (1999). [CrossRef]
  32. R. Volkamer, P. Spietz, J. Burrows, and U. Platt, “High-resolution absorption cross-section of glyoxal in the UV-vis and IR spectral ranges,” J. Photochem. Photobiol., A 172, 35–46 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited