OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 50, Iss. 5 — Feb. 10, 2011
  • pp: 671–678

Noncontact interferometric optical probe for calibration of coordinate measuring machines

Antonin Mikš and Jiri Novak  »View Author Affiliations


Applied Optics, Vol. 50, Issue 5, pp. 671-678 (2011)
http://dx.doi.org/10.1364/AO.50.000671


View Full Text Article

Enhanced HTML    Acrobat PDF (454 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Our work deals with point length standards, which can be practically realized by two precise spheres or parts of spheres connected by a bar or array of spherical surfaces. The distance between the centers of spheres precisely determines the length. Two methods (mechanical and optical) are shown for determination of the centers of spheres of the length standard. The proposed optical method is based on the interference of light. General formulas are derived that make it possible to calculate accurately the center position of the spherical surface, which is used for the length standards. An analysis of the proposed method is described based on the third-order aberration theory. The proposed technique can be used for calibration and checking of computer numerical controlled machines.

© 2011 Optical Society of America

OCIS Codes
(080.1010) Geometric optics : Aberrations (global)
(120.3180) Instrumentation, measurement, and metrology : Interferometry
(120.4630) Instrumentation, measurement, and metrology : Optical inspection
(150.3040) Machine vision : Industrial inspection
(150.1488) Machine vision : Calibration
(150.3045) Machine vision : Industrial optical metrology

ToC Category:
Machine Vision

History
Original Manuscript: July 26, 2010
Revised Manuscript: October 20, 2010
Manuscript Accepted: December 28, 2010
Published: February 4, 2011

Citation
Antonin Mikš and Jiri Novak, "Noncontact interferometric optical probe for calibration of coordinate measuring machines," Appl. Opt. 50, 671-678 (2011)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-50-5-671


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. G. T. Smith, Industrial Metrology (Springer, 2002).
  2. C. Dotson, Fundamentals of Dimensional Metrology, 5th ed. (Delmar Learning, 2006).
  3. N. Suga, Metrology Handbook: The Science of Measurement (Mitutoyo, 2007).
  4. D. C. Williams, Optical Methods in Engineering Metrology (Chapman & Hall, 1993). [CrossRef]
  5. F. M. Santoyo, Handbook of Optical Metrology (CRC, 2008).
  6. T. Yoshizawa, Handbook of Optical Metrology: Principles and Applications (CRC, 2009). [CrossRef]
  7. J. A. Bosch, Coordinate Measuring Machines and Systems (CRC, 1995).
  8. K. H. Grote, E. K. Antonsson, Springer Handbook of Mechanical Engineering (Springer, 2009). [CrossRef]
  9. T. Pfeifer, Production Metrology (Oldenbourg Wissenschaftsverlag, 2002).
  10. I. Kovac and A. Frank, “Testing and calibration of coordinate measuring arms,” Precis. Eng. 25, 90–99 (2001). [CrossRef]
  11. K. Busch, H. Kunzmann, and F. Wäldele, “Calibration of coordinate measuring machines,” Precis. Eng. 7, 139–144 (1985). [CrossRef]
  12. J. F. Ouyang and I. S. Jawahir, “Ball array calibration on a coordinate measuring machine using a gage block,” Measurement 16, 219–229 (1995). [CrossRef]
  13. H. F. F. Castro and M. Burdekin, “Dynamic calibration of the positioning accuracy of machine tools and coordinate measuring machines using a laser interferometer,” Int. J. Mach. Tools Manuf. 43, 947–954 (2003). [CrossRef]
  14. H. F. F. Castro, “Uncertainty analysis of a laser calibration system for evaluating the position accuracy of a numerically controlled axis of coordinate measuring machines and machines tools,” Precis. Eng. 32, 106–113 (2008). [CrossRef]
  15. H. Schwenke, F. Wäldele, C. Weiskirch, and H. Kunzmann, “Opto-tactile sensor for 2D and 3D measurement of small structures on coordinate measuring machines,” CIRP Annals Manuf. Technol. 50, 361–364 (2001). [CrossRef]
  16. G. X. Zhang and Y. F. Zang, “A method for machine geometry calibration using 1-D ball array,” CIRP Annals Manuf. Technol. 40, 519–522 (1991). [CrossRef]
  17. O. Iwasinska-Kowalska and M. Dobosz, “A new method of non-contact gauge block calibration using a fringe-counting technique I, II,” Opt. Laser Technol. 42, 149–155 (2010). [CrossRef]
  18. K. Umetsu, R. Furutnani, S. Osawa, T. Takatsuji, and T. Kurosawa, “Geometric calibration of a coordinate measuring machine using a laser tracking system,” Meas. Sci. Technol. 16, 2466–2472 (2005). [CrossRef]
  19. D. Malacara, M. Servin, and Z. Malacara, Interferogram Analysis for Optical Testing (CRC, 2005). [CrossRef]
  20. J. C. Wyant and K. Creath, “Basic wavefront aberration theory for optical metrology,” in Applied Optics and Optical Engineering (Academic, 1992), Vol.  XI, Chap. 1.
  21. K. A. Nugent, “Interferogram analysis using an accurate fully automatic algorithm,” Appl. Opt. 24, 3101–3105 (1985). [CrossRef] [PubMed]
  22. M. Takeda, H. Ina, and S. Kobayashi, “Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry,” J. Opt. Soc. Am. 72, 156–160 (1982). [CrossRef]
  23. C. Roddier and F. Roddier, “Interferogram analysis using Fourier transform techniques,” Appl. Opt. 26, pp. 1668–1673(1987). [CrossRef] [PubMed]
  24. J. H. Bruning, D. R. Herriott, J. E. Gallagher, D. P. Rosenfeld, A. D. White, and D. J. Brangaccio, “Digital wavefront measuring interferometer for testing optical surfaces and lenses,” Appl. Opt. 13, 2693–2703 (1974). [CrossRef] [PubMed]
  25. K. Creath, “Phase-measurement interferometry techniques,” in Progress in Optics, E.Wolf, ed. (Elsevier Science, 1988), Vol.  XXVI, pp. 349–393. [CrossRef]
  26. J. Schmit and K. Creath, “Window function influence on phase error in phase-shifting algorithms,” Appl. Opt. 35, 5642–5649(1996). [CrossRef] [PubMed]
  27. J. Schmit and K. Creath, “Extended averaging technique for derivation of error-compensating algorithms in phase-shifting interferometry,” Appl. Opt. 34, 3610–3619 (1995). [CrossRef] [PubMed]
  28. J. Schwider, R. Burow, K.-E. Elssner, J. Grzanna, R. Spolaczyk, and K. Merkel, “Digital wave-front measuring interferometry: some systematic error sources,” Appl. Opt. 22, 3421–3432 (1983). [CrossRef] [PubMed]
  29. K. Kinnstaetter, A. W. Lohmann, J. Schwider, and N. Streibl, “Accuracy of phase shifting interferometry,” Appl. Opt. 27, 5082–5089 (1988). [CrossRef] [PubMed]
  30. M. Born and E. Wolf, Principles of Optics (Cambridge University, 1999).
  31. A. Mikš, Applied Optics (Czech Technical University, 2009). [PubMed]
  32. W. T. Welford, Aberrations of the Symmetrical Optical Systems (Academic, 1974).
  33. H. H. Hopkins, Wave Theory of Aberrations (Oxford University, 1950).
  34. D. Malacara, Optical Shop Testing (Wiley & Sons, 2007). [CrossRef]
  35. A. Mikš, J. Novak, and P. Novak, “Generalized refractive tunable-focus lens and its imaging characteristics,” Opt. Express 18, 9034–9047 (2010). [CrossRef] [PubMed]
  36. A. Mikš and J. Novak, “Third-order aberrations of the thin refractive tunable-focus lens,” Opt. Lett. 35, 1031–1033 (2010). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited