OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 50, Iss. 5 — Feb. 10, 2011
  • pp: 696–700

Enhanced photoluminescence spectroscopy for thin films using the attenuated total reflection method

Takashi Wakamatsu, Tadaaki Kitami, Tomoaki Maruyama, and Susumu Toyoshima  »View Author Affiliations

Applied Optics, Vol. 50, Issue 5, pp. 696-700 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (278 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present a powerful spectral photoluminescence measurement method for thin films that utilizes the enhanced absorption of the fluorescent thin films on metal thin films with attenuated total reflection (ATR). The photoluminescence measurement has the advantageous effects of avoiding transmitted light and preventing the loss of luminescence through waveguiding in the film substrates. The ATR modes excited by low-power incident light provide fluorescence intensities that are considerably larger than that of conventional photoluminescence measurements and preserve the spectral profile of the photoluminescence.

© 2011 Optical Society of America

OCIS Codes
(160.2540) Materials : Fluorescent and luminescent materials
(260.6970) Physical optics : Total internal reflection
(300.2530) Spectroscopy : Fluorescence, laser-induced
(300.6280) Spectroscopy : Spectroscopy, fluorescence and luminescence
(310.6860) Thin films : Thin films, optical properties

ToC Category:

Original Manuscript: October 26, 2010
Revised Manuscript: December 19, 2010
Manuscript Accepted: December 30, 2010
Published: February 7, 2011

Takashi Wakamatsu, Tadaaki Kitami, Tomoaki Maruyama, and Susumu Toyoshima, "Enhanced photoluminescence spectroscopy for thin films using the attenuated total reflection method," Appl. Opt. 50, 696-700 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. C. W. Tang and S. A. VanSlyke, “Organic electroluminescent diodes,” Appl. Phys. Lett. 51, 913–915 (1987). [CrossRef]
  2. J. Kido, H. Shionoya, and K. Nagai, “Single-layer white-emitting organic electroluminescent devices based on dye-dispersed poly (N-vinylcarbazole),” Appl. Phys. Lett. 67, 2281–2283 (1995). [CrossRef]
  3. C. F. Madigan, M.-H. Lu, and J. C. Sturm, “Improvement of output coupling efficiency of organic light-emitting diodes by backside substrate modification,” Appl. Phys. Lett. 76, 1650–1652 (2000). [CrossRef]
  4. V. Bulović, V. B. Khalfin, G. Gu, P. E. Burrows, D. Z. Garbuzov, and S. R. Forrest, “Weak microcavity effects in organic light-emitting devices,” Phys. Rev. B 58, 3730–3740 (1998). [CrossRef]
  5. G. Gu, D. Z. Garbuzov, P. E. Burrows, S. Venkatesh, S. R. Forrest, and M. E. Thompson, “High-external-quantum-efficiency organic light-emitting devices,” Opt. Lett. 22, 396–398 (1997). [CrossRef] [PubMed]
  6. M. Berggren, A. Dodabalapur, and R. E. Slusher, “Stimulation emission and lasing in dye-doped organic thin films with Forster transfer,” Appl. Phys. Lett. 71, 2230–2232 (1997). [CrossRef]
  7. H. Raether, Excitation of Plasmons and Interband Transitions by Electrons, Vol.  80 of Springer Tracts in Modern Physics (Springer-Verlag, 1980).
  8. T. Liebermann and W. Knoll, “Surface-plasmon field-enhanced fluorescence spectroscopy,” Colloids Surf. A 171, 115–130(2000). [CrossRef]
  9. S. Roy, J.-H. Kim, J. T. Kellis, Jr., A. J. Poulose, C. R. Robertson, and A. P. Gast, “Surface plasmon resonance/surface plasmon enhanced fluorescence: an optical technique for the detection of multicomponent macromolecular adsorption at the solid/liquid interface,” Langmuir 18, 6319–6323 (2002). [CrossRef]
  10. S. Ekgasit, F. Yu, and W. Knoll, “Fluorescence intensity in surface-plasmon field-enhanced fluorescence spectroscopy,” Sens. Actuators B 104, 294–301 (2005). [CrossRef]
  11. T. Wakamatsu and K. Saito, “Interpretation of attenuated-total-reflection dips observed in surface plasmon resonance,” J. Opt. Soc. Am. B 24, 2307–2313 (2007). [CrossRef]
  12. B. Rothenhäussler and W. Knoll, “Surface-plasmon microscopy,” Nature 332, 615–617 (1988). [CrossRef]
  13. P. S. Vukusic and J. R. Sambles, “Cobalt phthalocyanine as a basis for the optical sensing of nitrogen dioxide using surface plasmon resonance,” Thin Solid Films 221, 311–317 (1992). [CrossRef]
  14. J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B 54, 3–15 (1999). [CrossRef]
  15. P. K. Tien, R. Ulrich, and R. J. Martin, “Modes of propagating light waves in thin deposited semiconductor films,” Appl. Phys. Lett. 14, 291–294 (1969). [CrossRef]
  16. R. Ulrich and R. Torge, “Measurement of thin film parameters with a prism coupler,” Appl. Opt. 12, 2901–2908(1973). [CrossRef] [PubMed]
  17. T. Wakamatsu, K. Watanabe, and K. Saito, “Low-refractive-index dye-aggregate films with small absorption based on anomalous dispersion,” Appl. Opt. 44, 906–911 (2005). [CrossRef] [PubMed]
  18. W. H. Weber and C. F. Eagen, “Energy transfer from an excited dye molecule to the surface plasmons of an adjacent metal,” Opt. Lett. 4, 236–238 (1979). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited