OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 50, Iss. 5 — Feb. 10, 2011
  • pp: 738–754

Design of differential optical absorption spectroscopy long-path telescopes based on fiber optics

André Merten, Jens Tschritter, and Ulrich Platt  »View Author Affiliations

Applied Optics, Vol. 50, Issue 5, pp. 738-754 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (2518 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present a new design principle of telescopes for use in the spectral investigation of the atmosphere and the detection of atmospheric trace gases with the long-path differential optical absorption spectroscopy (DOAS) technique. A combination of emitting and receiving fibers in a single bundle replaces the commonly used coaxial-Newton-type combination of receiving and transmitting telescope. This very simplified setup offers a higher light throughput and simpler adjustment and allows smaller instruments, which are easier to handle and more portable. The higher transmittance was verified by ray-tracing calculations, which result in a theoretical factor threefold improvement in signal intensity compared with the old setup. In practice, due to the easier alignment and higher stability, up to factor of 10 higher signal intensities were found. In addition, the use of a fiber optic light source provides a better spectral characterization of the light source, which results in a lower detection limit for trace gases studied with this instrument. This new design will greatly enhance the usability and the range of applications of active DOAS instruments.

© 2011 Optical Society of America

OCIS Codes
(010.1280) Atmospheric and oceanic optics : Atmospheric composition
(120.4640) Instrumentation, measurement, and metrology : Optical instruments
(280.1120) Remote sensing and sensors : Air pollution monitoring
(230.2285) Optical devices : Fiber devices and optical amplifiers

ToC Category:
Atmospheric and Oceanic Optics

Original Manuscript: July 20, 2010
Revised Manuscript: November 9, 2010
Manuscript Accepted: December 7, 2010
Published: February 9, 2011

André Merten, Jens Tschritter, and Ulrich Platt, "Design of differential optical absorption spectroscopy long-path telescopes based on fiber optics," Appl. Opt. 50, 738-754 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. U. Platt, “Differential optical absorption spectroscopy (DOAS),” in Air Monitoring by Spectroscopic Techniques, M.W.Sigrist, ed. (Wiley, 1994), pp. 27–84.
  2. U. Platt and J. Stutz, “Differential optical absorption spectroscopy, principles and applications,” in Physics of Earth and Space Environments (Springer, 2008), Vol.  15, p. 597.
  3. H. Axelsson, B. Galle, K. Gustavsson, P. Ragnarsson, and M. Rudi, “A transmitting/receiving telescope for DOAS-measurements using retro-reflector technique,” in Optical Remote Sensing of the Atmosphere, OSA Technical Digest Series (Optical Society of America, 1990), Vol.  4, pp. 641–644.
  4. H. Veitel, B. Kromer, M. Mössner, and U. Platt, “New techniques for measurements of atmospheric vertical trace gas profiles using DOAS,” Environ. Sci. Pollut. Res. Int. 41, 17–26(2002).
  5. A. Geyer and J. Stutz, “Vertical profiles of NO3, N2O5, O3, and NOx in the nocturnal boundary layer: 2. Model studies on the altitude dependence of composition and chemistry,” J. Geophys. Res. 109, D12307 (2004). [CrossRef]
  6. J. Stutz and U. Platt, “Improving long-path differential optical absorption spectroscopy with a quartz-fiber mode mixer,” Appl. Opt. 36, 1105–1115 (1997). [CrossRef]
  7. A. Merten, “Neues Design von Langpfad-DOAS-Instrumenten basierend auf Faseroptiken und Anwendungen der Untersuchung der urbanen Atmosphäre,” Ph.D. thesis (Institute for Environmental Physics, University of Heidelberg, 2008).
  8. C. Kern, H. Sihler, L. Vogel, C. Rivera, M. Herrera, and U. Platt, “Halogen oxide measurements at Masaya volcano, Nicaragua using active long path differential optical absorption spectroscopy,” Bull. Volcanol. 71, 659–670 (2009). [CrossRef]
  9. T. Hermes, “Lichtquellen und Optik für die Differentielle optische Absorptionsspektroskopie,” Diploma thesis (Institute for Environmental Physics, University of Heidelberg, 2000).
  10. C. Kern, S. Trick, B. Rippel, and U. Platt, “Applicability of light-emitting diodes as light sources for active differential optical absorption spectroscopy measurements,” Appl. Opt. 45, 2077–2088 (2006). [CrossRef]
  11. N. E. Rityn, “Optics of corner cube reflectors,” Sov. J. Opt. Technol. 34, 198–201 (1967).
  12. H. J. Veitel, “Vertical profiles of NO2 and HONO in the boundary layer,” Ph.D. thesis (Institute for Environmental Physics, University of Heidelberg, 2002).
  13. J. Lösch, “Bestimmung von NO2—und SO2—Emissionen von Kraftfahrzeugen mittels DOAS-Tomographie,” Diploma thesis (Institute for Environmental Physics, University of Heidelberg, 2001).
  14. T. Rudolf, “Beschreibung und Charakterisierung einer Lang-Pfad-DOAS-Apparatur und eine Analyse des Auswertverfahrens,” Diploma thesis (Institute for Environmental Physics, University of Heidelberg, 1993).
  15. FrankTräger, ed., Springer Handbook of Lasers and Optics (Springer, 2007), pp. 69–70.
  16. J. P. Pérez, Optik (Spektrum Akademischer Verlag, 1996), pp. 514–515.
  17. D. L. Fried, “Statistics of a geometric representation of wavefront distortion,” J. Opt. Soc. Am. 55, 1427–1435 (1965). [CrossRef]
  18. D. L. Fried, “Optical heterodyne detection of an atmospheric distorted signal wave front,” Proc. IEEE 55, 57–76 (1967). [CrossRef]
  19. J. W. Goodman, Statistical Optics (Wiley, 1985), pp. 427–431.
  20. R. Jüngling, “Simulation gerichteter Ausbreitung optischer Wellen in turbulenter Atmosphäre,” Diploma thesis (Westfälische Wilhems-Universität Münster, 2001).
  21. G. D. Love, C. N. Dunlop, S. Patrick, and C. D. Saunter, “Horizontal turbulence measurements using SLODAR,” Proc. SPIE 5891, 27–32 (2005).
  22. J. Stutz, “Messung der Konzentration troposphärischer Spurenstoffe mittels Differentieller-Optischer-Absorptionsspektroskopie: eine neue generation von Geräten und Algorithmen,” Ph.D. thesis (Institute for Environmental Physics, University of Heidelberg, 1996).
  23. W. Roedel, Physik Unserer Umwelt: Die Atmosphäre (Springer Verlag, 1992), pp. 27–30.
  24. J. C. E. Buxmann, “Optimierte Langpfad-DOAS-Messungen von BrO und ClO an der irischen Westküste,” Diplomathesis (Institute for Environmental Physics, University of Heidelberg, 2008).
  25. K. Seitz, J. Buxmann, D. Pöhler, T. Sommer, J. Tschritter, T. Neary, C. O’Dowd, and U. Platt, “The spatial distribution of the reactive iodine species IO from simultaneous active and passive DOAS observations,” Atmos. Chem. Phys. 10, 2117–2128 (2010). [CrossRef]
  26. H. Sihler, C. Kern, D. Pohler, and U. Platt, “Applying light-emitting diodes with narrowband emission features in differential spectroscopy,” Opt. Lett. 34, 3716–3718 (2009). [CrossRef]
  27. D. Pöhler, L. Vogel, U. Friess, and U. Platt, “Observation of halogen species in the Amundsen Gulf, Arctic, by active long-path differential optical absorption spectroscopy,” Proc. Natl. Acad. Sci. U.S.A. 107, 6582–6587 (2010). [CrossRef]
  28. J. Tschritter, “Entwicklung einer DOAS-Optik der 3. Generation und ein Vergleich mit herkömmlichen Systemen,” Diploma thesis (Institute for Environmental Physics, University of Heidelberg, 2007).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited