OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 50, Iss. 5 — Feb. 10, 2011
  • pp: 773–781

Examination of singular scalar light fields using wavelet processing of fork fringes

Krzysztof Patorski and Krzysztof Pokorski  »View Author Affiliations

Applied Optics, Vol. 50, Issue 5, pp. 773-781 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (875 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A single frame fork fringe pattern automatic processing method for detecting optical vortices in coherent light fields using two-dimensional continuous wavelet transformation is proposed. When a vortex sign is of no importance, it is sufficient to calculate the fork interferogram modulation distribution and its normalized gradient map to establish vortex locations without resorting to complicated phase calculations. Normalization of modulation gradient maps enables unambiguous vortex discrimination from local modulation minima without phase singularity. The issue of vortex detection resolution versus carrier fringe frequency and orientation is discussed. Corroboration of simulation and experimental studies of integer and noninteger singular light beams as well as speckle fields reported in the literature and analyzed using different approaches is presented.

© 2011 Optical Society of America

OCIS Codes
(100.7410) Image processing : Wavelets
(120.2650) Instrumentation, measurement, and metrology : Fringe analysis
(120.3180) Instrumentation, measurement, and metrology : Interferometry
(050.4865) Diffraction and gratings : Optical vortices
(260.6042) Physical optics : Singular optics

ToC Category:
Image Processing

Original Manuscript: November 10, 2010
Manuscript Accepted: January 3, 2011
Published: February 9, 2011

Krzysztof Patorski and Krzysztof Pokorski, "Examination of singular scalar light fields using wavelet processing of fork fringes," Appl. Opt. 50, 773-781 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. F. Nye and M. V. Berry, “Dislocation in wave trains,” Proc. R. Soc. A 336, 165–190 (1974). [CrossRef]
  2. M. S. Soskin and M. V. Vasnetsov, “Singular optics,” in Progress in Optics, E.Wolf, ed. (North-Holland, 2001), Vol.  42, pp. 219–276. [CrossRef]
  3. J. Masajada and B. Dubik, “Optical vortex generation by three plane wave interferfence,” Opt. Commun. 198, 21–27 (2001). [CrossRef]
  4. P. Kurzynowski, W. A. Woźniak, and E. Fraczek, “Optical vortices generation using the Wollaston prism,” Appl. Opt. 45, 7898–7903 (2006). [CrossRef] [PubMed]
  5. S. Vyas and P. Senthilkumaran, “Interferometric optical vortex array generator,” Appl. Opt. 46, 2893–2898 (2007). [CrossRef] [PubMed]
  6. S. Vyas and P. Senthilkumaran, “Vortex array generation by interference of spherical waves,” Appl. Opt. 46, 7862–7867 (2007). [CrossRef] [PubMed]
  7. V. G. Denisenko, A. Minovich, A. S. Desyatnikov, W. Krolikowski, M. S. Soskin, and Y. S. Kivshar, “Mapping phases of singular scalar light fields,” Opt. Lett. 33, 89–91(2008). [CrossRef]
  8. A. Federico and G. H. Kaufmann, “Phase retrieval of singular scalar light fields using a two-dimensional directional wavelet transform and a spatial carrier,” Appl. Opt. 47, 5201–5207(2008). [CrossRef] [PubMed]
  9. F. A. Starikov, G. G. Kochemasov, S. M. Kulikov, A. N. Manachinsky, N. V. Maslov, A. V. Ogorodnikov, S. A. Sukharev, V. P. Aksenov, I. V. Izmailov, F. Y. Kanev, V. V. Atuchin, and I. S. Soldatenkov, “Wavefront reconstruction of an optical vortex by a Hartmann-Shack sensor,” Opt. Lett. 32, 2291–2293 (2007). [CrossRef] [PubMed]
  10. K. Murphy, D. Burke, N. Devaney, and C. Dainty, “Experimental detection of optical vortices with a Shack-Hartmann wavefront sensor,” Opt. Express 18, 15448–15460 (2010). [CrossRef] [PubMed]
  11. O. Angelsky, A. Maksimyak, P. Maksimyak, and S. Hanson, “Spatial behaviour of singularities in Fractal- and Gaussian speckle fields,” Open Opt. J. 3, 29–43 (2009). [CrossRef]
  12. I. Freund, “Optical vortices in Gaussian random wave fields: statistical probability densities,” J. Opt. Soc. Am. A 11, 1644–1652 (1994). [CrossRef]
  13. I. Freund, “Vortex derivatives,” Opt. Commun. 137, 118–126(1997). [CrossRef]
  14. M. Vasnetsov, Optical Vortices (Nova Science, 1999).
  15. M. A. Gdeisat, D. R. Burton, and M. J. Lalor, “Spatial carrier fringe pattern demodulation by use of a two-dimensional continuous wavelet transform,” Appl. Opt. 45, 8722–8732 (2006). [CrossRef] [PubMed]
  16. K. Pokorski and K. Patorski, “Visualization of additive-type moiré and time-average fringe patterns using the continuous wavelet transform,” Appl. Opt. 49, 3640–3651 (2010). [CrossRef] [PubMed]
  17. Z. Wang and H. Ma, “Advanced continuous wavelet transform algorithm for digital interferogram analysis and processing,” Opt. Eng. 45, 045601 (2006). [CrossRef]
  18. J.-P. Antoine, R. Murenzi, P. Vandergheynst, and S. T. Ali, Two-Dimensional Wavelets and Their Relatives (Cambridge University, 2008).
  19. D. L. Fried and J. L. Vaughn, “Branch cuts in the phase function,” Appl. Opt. 31, 2865–2882 (1992). [CrossRef] [PubMed]
  20. M. Berry, “Optical vortices evolving from helicoidal integer and fractional phase steps,” J. Opt. A Pure Appl. Opt. 6, 259–268 (2004). [CrossRef]
  21. J. Leach, E. Yao, and M. J. Padgett, “Observation of the vortex structure of a non-integer vortex beam,” New J. Phys. 6, 71 (2004). [CrossRef]
  22. I. V. Basistiy, V. A. Pasko, V. V. Slyusar, M. S. Soskin, and M. V. Vasnetsov, “Synthesis and analysis of optical vortices with fractional topological charges,” J. Opt. A Pure Appl. Opt. 6, S166–S169 (2004). [CrossRef]
  23. S. Baumann and E. Galvez, “Non-integral vortex structures in diffracted light beams,” Proc. SPIE 6483, 64830T(2007). [CrossRef]
  24. W. Wang, Z. Duan, S. G. Hanson, Y. Miyamoto, and M. Takeda, “Experimental study of coherence vortices: local properties of phase singularities in a spatial coherence function,” Phys. Rev. Lett. 96, 073902 (2006). [CrossRef] [PubMed]
  25. M. V. Berry and M. R. Dennis, “Knotted and linked phase singularities in monochromatic waves,” Proc. R. Soc. A 457, 2251–2263 (2001). [CrossRef]
  26. J. Leach, M. R. Dennis, J. Courtial, and M. J. Padgett, “Vortex knots in light,” New J. Phys. 7, 55 (2005). [CrossRef]
  27. K. O’Holleran, M. Dennis, and M. Padget, “Illustrations of optical vortices in three dimensions,” J. Europ. Opt. Soc. Rap. Public. 1, 06008 (2006). [CrossRef]
  28. Laboratoire de Télédection et Télédétection, “YAWTb: yet another wavelet toolbox,” http://rhea.tele.ucl.ac.be/yawtb/.
  29. E. Galvez and S. Baumann, “Composite vortex patterns formed by component light beams with non-integral topological charge,” Proc. SPIE 6905, 69050D (2008). [CrossRef]
  30. E. Galvez, N. Smiley, and N. Fernandes, “Composite optical vortices formed by collinear Laguerre-Gauss beams,” Proc. SPIE 6131, 613105 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited