OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 50, Iss. 6 — Feb. 20, 2011
  • pp: 822–828

B-spline representation of optical surfaces and its accuracy in a ray trace algorithm

Philipp Jester, Christoph Menke, and Karsten Urban  »View Author Affiliations


Applied Optics, Vol. 50, Issue 6, pp. 822-828 (2011)
http://dx.doi.org/10.1364/AO.50.000822


View Full Text Article

Enhanced HTML    Acrobat PDF (564 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We introduce a representation of aspheric surfaces that is based on a B-spline quasi-interpolation scheme. The scheme is implemented in a ray trace algorithm, and bounds on the approximation error are established. Examples for the reproduction of aspheric surfaces in polynomial description and the ray tracing accuracy are presented. The proposed approach allows the specification of local and global structures and the efficient treatment of measured surface data. The representation gives access to a wavelet analysis, offering extended possibilities for the tolerance analysis of optical systems containing aspheric elements.

© 2011 Optical Society of America

OCIS Codes
(000.4430) General : Numerical approximation and analysis
(080.0080) Geometric optics : Geometric optics
(220.1250) Optical design and fabrication : Aspherics
(240.6700) Optics at surfaces : Surfaces
(080.1753) Geometric optics : Computation methods

History
Original Manuscript: September 16, 2010
Revised Manuscript: January 6, 2011
Manuscript Accepted: January 6, 2011
Published: February 11, 2011

Citation
Philipp Jester, Christoph Menke, and Karsten Urban, "B-spline representation of optical surfaces and its accuracy in a ray trace algorithm," Appl. Opt. 50, 822-828 (2011)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-50-6-822


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. W. Greynolds, “Superconic and subconic surface descriptions in optical design,” Proc. SPIE 4832, 1–9 (2002). [CrossRef]
  2. G. W. Forbes, “Shape specification for axially symmetric optical surfaces,” Opt. Express 15, 5218–5226 (2007). [CrossRef] [PubMed]
  3. K. P. Thompson, F. Fournier, J. P. Rolland, and G. W. Forbes, “The Forbes polynomial: a more predictable surface for fabricators,” in Optical Fabrication and Testing (Optical Society of America, 2010), paper OTuA6.
  4. S. A. Lerner and J. M. Sasian, “Use of implicitly defined optical surfaces for the design of imaging and illumination systems,” Opt. Eng. 39, 1796–1801 (2000). [CrossRef]
  5. S. A. Lerner and J. M. Sasian, “Optical design with parametrically defined aspheric surfaces,” Appl. Opt. 39, 5205–5213(2000). [CrossRef]
  6. G. G. Gregory, E. R. Freniere, and L. R. Gardner, “Using spline surfaces in optical design software,” Proc. SPIE 4769, 75–83 (2002). [CrossRef]
  7. A. K. Rigler and T. P. Vogl, “Spline functions: an alternative representation of aspheric surfaces,” Appl. Opt. 10, 1648–1651 (1971). [CrossRef] [PubMed]
  8. J. E. Stacy, “Asymmetric spline surfaces: characteristics and applications,” Appl. Opt. 23, 2710–2714 (1984). [CrossRef] [PubMed]
  9. H. Chase, “Optical design with rotationally symmetric NURBS,” Proc. SPIE 4832, 10–24 (2002). [CrossRef]
  10. P. Ott, “Optic design of head-up displays with freeform surfaces specified by NURBS,” Proc. SPIE 7100, 71000Y (2008). [CrossRef]
  11. O. Cakmakci, B. Moore, H. Foroosh, and J. P. Rolland, “Optimal local shape description for rotationally non-symmetric optical surface design and analysis,” Opt. Express 16, 1583–1589 (2008). [CrossRef] [PubMed]
  12. S. Morita, Y. Nishidate, T. Nagata, Y. Yamagata, and C. Teodosiu, “Ray-tracing simulation method using piecewise quadratic interpolant for aspheric optical systems,” Appl. Opt. 49, 3442–3451 (2010). [CrossRef] [PubMed]
  13. C. de Boor, A Practical Guide to Splines, revised ed., Vol.  27 of Applied Mathematical Sciences (Springer-Verlag, 2001).
  14. A. Cohen, I. Daubechies, and J.-C. Feauveau, “Biorthogonal bases of compactly supported wavelets,” Commun. Pure Appl. Math. 45, 485–560 (1992). [CrossRef]
  15. S. Mallat, A Wavelet Tour of Signal Processing (Academic, 1998).
  16. P. Jester, C. Menke, and K. Urban, “Wavelet methods for the representation, analysis and simulation of optical surfaces,” submitted to IMA J. Appl. Math.
  17. K. Urban, Wavelet Methods for Elliptic Partial Differential Equations (Oxford University, 2009).
  18. R. A. Adams, Sobolev Spaces, Vol.  65 of Pure and Applied Mathematics (Academic, 1975).
  19. K. Bittner and K. Urban, “Adaptive wavelet methods using semiorthogonal spline wavelets: Sparse evaluation of nonlinear functions,” Appl. Comput. Harmon. Anal. 24, 94–119(2008). [CrossRef]
  20. Flexible Library for Efficient Numerical Solutions and Library for Adaptive Wavelet Applications, Institute for Numerical Mathematics, Ulm University.
  21. Optische Analyse und Synthese, Carl Zeiss AG.
  22. P. Jester, “Beschreibung optischer Grenzflächen mit Wavelets,” Diploma thesis, Institute for Numerical Mathematics (Ulm University, Germany, 2007).
  23. A. Dogariu, J. Uozumi, and T. Asakura, “Wavelet transform analysis of slightly rough surfaces,” Opt. Commun. 107, 1–5(1994). [CrossRef]
  24. C.-L. Tien and Y.-R. Lyu, “Optical surface flatness recognized by discrete wavelet transform and grey level co-occurrence matrix,” Meas. Sci. Technol. 17, 2299–2305 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited