OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 50, Iss. 6 — Feb. 20, 2011
  • pp: 852–858

Experimental geometry for simultaneous beam characterization and sample imaging allowing for pink beam Fourier transform holography or coherent diffractive imaging

Samuel Flewett and Stefan Eisebitt  »View Author Affiliations


Applied Optics, Vol. 50, Issue 6, pp. 852-858 (2011)
http://dx.doi.org/10.1364/AO.50.000852


View Full Text Article

Enhanced HTML    Acrobat PDF (811 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

One consequence of the self-amplified stimulated emission process used to generate x rays in free electron lasers (FELs) is the intrinsic shot-to-shot variance in the wavelength and temporal coherence. In order to optimize the results from diffractive imaging experiments at FEL sources, it will be advantageous to acquire a means of collecting coherence and spectral information simultaneously with the diffraction pattern from the sample we wish to study. We present a holographic mask geometry, including a grating structure, which can be used to extract both temporal and spatial coherence information alongside the sample scatter from each individual FEL shot and also allows for the real space reconstruction of the sample using either Fourier transform holography or iterative phase retrieval.

© 2011 Optical Society of America

OCIS Codes
(030.1640) Coherence and statistical optics : Coherence
(090.1970) Holography : Diffractive optics
(340.7215) X-ray optics : Undulator radiation

ToC Category:
Coherence and Statistical Optics

History
Original Manuscript: October 12, 2010
Revised Manuscript: November 30, 2010
Manuscript Accepted: December 30, 2010
Published: February 15, 2011

Citation
Samuel Flewett and Stefan Eisebitt, "Experimental geometry for simultaneous beam characterization and sample imaging allowing for pink beam Fourier transform holography or coherent diffractive imaging," Appl. Opt. 50, 852-858 (2011)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-50-6-852


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. Boutet and G. J. Williams, “The Coherent X-ray Imaging (CXI) instrument at the Linac Coherent Light Source (LCLS),” New J. Phys. 12, 035024 (2010). [CrossRef]
  2. K. Tiedtke, A. Azima, N. von Bargen, L. Bittner, S. Bonfigt, S. Dusterer, B. Faatz, U. Fruhling, M. Gensch, C. Gerth, N. Guerassimova, U. Hahn, T. Hans, M. Hesse, K. Honkavaar, U. Jastrow, P. Juranic, S. Kapitzki, B. Keitel, T. Kracht, M. Kuhlmann, W. B. Li, M. Martins, T. Nunez, E. Plonjes, H. Redlin, E. L. Saldin, E. A. Schneidmiller, J. R. Schneider, S. Schreiber, N. Stojanovic, F. Tavella, S. Toleikis, R. Treusch, H. Weigelt, M. Wellhofer, H. Wabnitz, M. V. Yurkov, and J. Feldhaus, “The soft x-ray free-electron laser FLASH at DESY: beamlines, diagnostics and end-stations,” New J. Phys. 11, 023029 (2009). [CrossRef]
  3. B. Pfau, C. M. Günther, S. Schaffert, R. Mitzner, B. Siemer, S. Roling, H. Zacharias, O. Kutz, I. Rudolph, R. Treusch, and S. Eisebitt, “Femtosecond pulse x-ray imaging with a large field of view,” New J. Phys. 12, 095006 (2010). [CrossRef]
  4. S. Lee, Z. Huang, Y. Ding, P. Emma, W. Roseker, G. Gru¨bel, and A. Robert, “Toward a single mode free electron laser for coherent hard x-ray experiments,” arXiv:1006.0756v1 (2010).
  5. J. M. Rodenburg, A. C. Hurst, A. G. Cullis, B. R. Dobson, F. Pfeiffer, O. Bunk, C. David, K. Jefimovs, and I. Johnson, “Hard-x-ray lensless imaging of extended objects,” Phys. Rev. Lett. 98, 034801 (2007). [CrossRef] [PubMed]
  6. D. J. Vine, G. J. Williams, B. Abbey, M. A. Pfeifer, J. N. Clark, M. D. de Jonge, I. McNulty, A. G. Peele, and K. A. Nugent, “Ptychographic Fresnel coherent diffractive imaging,” Phys. Rev. A 80, 063823 (2009). [CrossRef]
  7. D. Stickler, R. Fromter, H. Stillrich, C. Menk, C. Tieg, S. Streit-Nierobisch, M. Sprung, C. Gutt, L. M. Stadler, O. Leupold, G. Grubel, and H. P. Oepen, “Soft x-ray holographic microscopy,” Appl. Phys. Lett. 96, 042501(2010). [CrossRef]
  8. E. Guehrs, C. M. Günther, B. Pfau, T. Rander, S. Schaffert, W. F. Schlotter, and S. Eisebitt, “Wavefield back-propagation in high-resolution x-ray holography with a movable field of view,” Opt. Express 18, 18922–18931 (2010). [CrossRef] [PubMed]
  9. L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge University, 1995).
  10. S. Flewett, H. M. Quiney, C. Q. Tran, and K. A. Nugent, “Extracting coherent modes from partially coherent wavefields,” Opt. Lett. 34, 2198–2200 (2009). [CrossRef] [PubMed]
  11. E. Wolf, “New theory of partial coherence in the space-frequency domain. I: Spectra and cross spectra of steady-state sources,” J. Opt. Soc. Am. 72, 343–351 (1982). [CrossRef]
  12. L. W. Whitehead, G. J. Williams, H. M. Quiney, D. J. Vine, R. A. Dilanian, S. Flewett, K. A. Nugent, A. G. Peele, E. Balaur, and I. McNulty, “Diffractive imaging using partially coherent x rays,” Phys. Rev. Lett. 103, 243902 (2009). [CrossRef]
  13. B. Chen, R. A. Dilanian, S. Teichmann, B. Abbey, A. G. Peele, G. J. Williams, P. Hannaford, L. Van Dao, H. M. Quiney, and K. A. Nugent, “Multiple wavelength diffractive imaging,” Phys. Rev. A 79, 023809 (2009). [CrossRef]
  14. K. A. Nugent, “Coherent methods in the x-ray sciences,” Adv. Phys. 59, 1–99 (2010). [CrossRef]
  15. C. Q. Tran, A. G. Peele, A. Roberts, K. A. Nugent, D. Paterson, and I. McNulty, “Synchrotron beam coherence: a spatially resolved measurement,” Opt. Lett. 30, 204–206(2005). [CrossRef] [PubMed]
  16. C. Q. Tran, G. J. Williams, A. Roberts, S. Flewett, A. G. Peele, D. Paterson, M. D. de Jonge, and K. A. Nugent, “Experimental measurement of the four-dimensional coherence function for an undulator x-ray source,” Phys. Rev. Lett. 98, 224801(2007). [CrossRef] [PubMed]
  17. K. A. Nugent, “Partially coherent diffraction patterns and coherence measurement,” J. Opt. Soc. Am. A 8, 1574–1579(1991). [CrossRef]
  18. It is also sufficient if there is no overlap in real space along any other pair of orthogonal coordinates.
  19. http://hasylab.desy.de/facilities/flash/facility_information/single_shot_spectrum/index_eng.html.
  20. https://slacportal.slac.stanford.edu/sites/lcls_public/Instruments/SXR/Pages/Specifications.aspx.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited