OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 50, Iss. 6 — Feb. 20, 2011
  • pp: 866–875

Temperature and nonlinearity corrections for a photodiode array spectrometer used in the field

Saber G. R. Salim, Nigel P. Fox, Evangelos Theocharous, Tong Sun, and Kenneth T. V. Grattan  »View Author Affiliations

Applied Optics, Vol. 50, Issue 6, pp. 866-875 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1414 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Temperature and nonlinearity effects are two important factors that limit the use of photodiode array spectrometers. Usually the spectrometer is calibrated at a known temperature against a reference source of a particular spectral radiance, and then it is used at different temperatures to measure sources of different spectral radiances. These factors are expected to be problematic for nontemperature-stabilized instruments used for in-the-field experiments, where the radiant power of the site changes continuously with the sun tilt. This paper describes the effect of ambient temperature on a nontemperature-stabilized linear photodiode array spectrometer over the temperature range from 5 °C to 40 °C . The nonlinearity effects on both signal amplification and different levels of radiant power have also been studied and are presented in this paper.

© 2011 Optical Society of America

OCIS Codes
(120.0280) Instrumentation, measurement, and metrology : Remote sensing and sensors
(120.3940) Instrumentation, measurement, and metrology : Metrology
(120.4640) Instrumentation, measurement, and metrology : Optical instruments
(120.4800) Instrumentation, measurement, and metrology : Optical standards and testing
(120.5630) Instrumentation, measurement, and metrology : Radiometry

ToC Category:

Original Manuscript: June 30, 2010
Revised Manuscript: October 25, 2010
Manuscript Accepted: December 27, 2010
Published: February 16, 2011

Saber G. R. Salim, Nigel P. Fox, Evangelos Theocharous, Tong Sun, and Kenneth T. V. Grattan, "Temperature and nonlinearity corrections for a photodiode array spectrometer used in the field," Appl. Opt. 50, 866-875 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. W. Brown, B. C. Johnson, M. E. Feinholz, M. A. Yarbrough, S. J. Flora, K. R. Lykke, and D. K. Clark, “Stray-light correction algorithm for spectrographs,” Metrologia 40, S81–S84(2003). [CrossRef]
  2. S. G. R. Salim, N. P. Fox, E. R. Woolliams, R. Winkler, H. M. Pegrum, T. Sun, and K. T. V. Grattan, “Use of eutectic fixed points to characterize a spectrometer for earth observations,” Int. J. Thermophys. 28, 2041–2048 (2007). [CrossRef]
  3. S. S. Vogt, R. G. Tull, and P. Kelton, “Self-scanned photodiode array: high performance operation in high dispersion astronomical spectrophotometry,” Appl. Opt. 17, 574–592 (1978). [CrossRef] [PubMed]
  4. H. Shen, T. J. Cardwell, and R. W. Cattrall, “The application of a chemical sensor array detector in ion chromatography for the determination of Na+, NH4+, K+, Mg2+ and Ca2+ in water samples,” Analyst 123, 2181–2184 (1998). [CrossRef]
  5. M. Belluso, M. C. Mazzillo, G. Bonanno, S. Billotta, S. Scuderi, A. Cali´, A. Micciche´, M. C. Timpanaro, D. Sanfilippo, P. G. Fallica, E. Sciacca, S. Lombardo, and A. Morabito, “SPAD array detectors for astrophysical applications,” Mem. S. A. It. Suppl. 9, 430–432 (2006).
  6. E. Milton, M. Schaepman, K. Anderson, M. Kneubühler, and N. P. Fox, “Progress in field spectroscopy,” Remote Sens. Environ. 113, S92–S109 (2009). [CrossRef]
  7. P. J. Starks, E. A. Walter-Shea, F. R. Schiebe, and B. L. Markham, “Temperature senstivity characterization of a silicon diode array spectrometer,” Remote Sens. Environ. 51, 385–389 (1995). [CrossRef]
  8. S. G. R. Salim, N. P. Fox, W. S. Hartree, E. R. Woolliams, T. Sun, and K. T. V. Grattan, “Monochromator-based stray light correction method for diode array based spectrometers,” submitted to Appl. Opt. (2010).
  9. Z. Yuqin, S. W. Brown, C. B. Johnson, K. R. Lykke, and Y. Ohno, “A simple spectral stray light correction method for array spectroradiometers,” Appl. Opt. 45, 1111–1119(2006). [CrossRef]
  10. S. G. R. Salim, “Reference spectrometry for calibration of optical earth observation satellites,” Ph.D. thesis (City University London, 2010).
  11. T. Kübarsepp, A. Haapalinna, P. Kärhä, and E. Ikonen, “Nonlinearity measurements of silicon photodetectors,” Appl. Opt. 37, 2716–2722 (1998). [CrossRef]
  12. L. P. Boivin, “Automated absolute and relative spectral linearity measurements on photovoltaic detectors,” Metrologia 30, 355–360 (1993). [CrossRef]
  13. B. Tabbert and A. O. Goushcha, “Linearity of the photocurrent response with light intensity for silicon PIN photodiode array,” in IEEE Nuclear Science Symposium Conference Record (IEEE, 2006), pp. 1060–1063. [CrossRef]
  14. K. D. Mielenz and K. L. Eckerle, “Spectrophotometer linearity testing using the double-aperture method,” Appl. Opt. 11, 2294–2303 (1972). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited