OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 50, Iss. 6 — Feb. 20, 2011
  • pp: 930–934

Preservation of fluorescence and Raman gain in the buried channel waveguides in neodymium-doped KGd ( WO 4 ) 2 (Nd:KGW) by femtosecond laser writing

Xiaoyu Liu, Shiliang Qu, Yang Tan, and Feng Chen  »View Author Affiliations


Applied Optics, Vol. 50, Issue 6, pp. 930-934 (2011)
http://dx.doi.org/10.1364/AO.50.000930


View Full Text Article

Enhanced HTML    Acrobat PDF (388 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report on the preservation of fluorescence and Raman gain in low-repetition-rate femtosecond laser written buried channel waveguides in neodymium-doped KGd ( WO 4 ) 2 . The propagation loss index, profile reconstruction, and calculation of the modal intensity distribution by the beam propagation method of the waveguide are presented. Microluminescence spectra of the waveguides show that the fluorescence properties of Nd 3 + ions are not significantly affected by the waveguide formation processing, which indicates a fairly good potential for further laser actions in a compact device. Micro-Raman spectra are also performed to reveal the preservation of the characteristic 768 and 901 cm 1 Raman mode intensities in the guiding regions.

© 2011 Optical Society of America

OCIS Codes
(130.0130) Integrated optics : Integrated optics
(140.3330) Lasers and laser optics : Laser damage
(160.0160) Materials : Materials
(180.2520) Microscopy : Fluorescence microscopy

ToC Category:
Integrated Optics

History
Original Manuscript: October 25, 2010
Manuscript Accepted: December 16, 2010
Published: February 17, 2011

Citation
Xiaoyu Liu, Shiliang Qu, Yang Tan, and Feng Chen, "Preservation of fluorescence and Raman gain in the buried channel waveguides in neodymium-doped KGd(WO4)2(Nd:KGW) by femtosecond laser writing," Appl. Opt. 50, 930-934 (2011)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-50-6-930


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. P. A. Loiko, K. V. Yumashev, N. V. Kuleshov, V. G. Savitski, S. Calvez, D. Burns, and A. A. Pavlyuk, “Thermal lens study in diode pumped N-g- and N-p-cut Nd:KGd(WO4)2 laser crystals,” Opt. Express 17, 23536–23543 (2009). [CrossRef]
  2. J. Hukriede, D. Kip, and E. Kratzig, “Permanent narrow-band reflection holograms for infrared light recorded in LiNbO3:Ti:Cu channel waveguides,” Appl. Phys. B 72, 749–753 (2001). [CrossRef]
  3. R. Ramponi, M. Marangoni, and R. Osellame, “Dispersion of the ordinary refractive-index change in a proton-exchanged LiNbO3 waveguide,” Appl. Phys. Lett. 78, 2098–2100 (2001). [CrossRef]
  4. S. I. Najafi, T. Touam, R. Sara, M. P. Andrews, and M. A. Fardad, “Sol-gel glass waveguide and grating on silicon,” J. Lightwave Technol. 16, 1640–1646 (1998). [CrossRef]
  5. P. D. Townsend, “Development of ion implantation for optical applications,” Vacuum 51, 301–304 (1998). [CrossRef]
  6. Y. X. Kong, F. Chen, D. Jaque, Q. M. Lu, and H. J. Ma, “Optical channel waveguide in Nd/Ce codoped YAG laser crystal produced by carbon ion implantation,” Appl. Opt. 48, 4514–4518(2009). [CrossRef] [PubMed]
  7. K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett. 21, 1729–1731 (1996). [CrossRef] [PubMed]
  8. K. Miura, J. R. Qiu, H. Inouye, T. Mitsuyu, and K. Hirao, “Photowritten optical waveguides in various glasses with ultrashort pulse laser,” Appl. Phys. Lett. 71, 3329–3331 (1997). [CrossRef]
  9. C. B. Schaffer, A. Brodeur, J. F. Garcia, and E. Mazur, “Micromachining bulk glass by use of femtosecond laser pulses with nanojoule energy,” Opt. Lett. 26, 93–95 (2001). [CrossRef]
  10. K. Yamada, W. Watanabe, T. Toma, K. Itoh, and J. Nishii, “In situ observation of photoinduced refractive-index changes in filaments formed in glasses by femtosecond laser pulses,” Opt. Lett. 26, 19–21 (2001). [CrossRef]
  11. S. L. Qu, C. J. Zhao, Q. Z. Zhao, J. R. Qiu, C. S. Zhu, and K. Hirao, “One-off writing of multimicrogratings on glass by two interfered femtosecond laser pulses,” Opt. Lett. 29, 2058–2060 (2004). [CrossRef] [PubMed]
  12. S. L. Qu, J. R. Qiu, C. J. Zhao, X. W. Jiang, H. D. Zeng, C. S. Zhu, and K. Hirao, “Metal nanoparticle precipitation in periodic arrays in Au2O-doped glass by two interfered femtosecond laser pulses,” Appl. Phys. Lett. 84, 2046–2048 (2004). [CrossRef]
  13. T. Pertsch, U. Peschel, F. Lederer, J. Burghoff, M. Will, S. Nolte, and A. Tünnermann, “Discrete diffraction in two-dimensional arrays of coupled waveguides in silica,” Opt. Lett. 29, 468–470 (2004). [CrossRef] [PubMed]
  14. A. Szameit, F. Dreisow, M. Heinrich, T. Pertsch, S. Nolte, A. Tünnermann, E. Suran, F. Louradour, A. Barthelemy, and S. Longhi, “Image reconstruction in segmented femtosecond laser-written waveguide arrays,” Appl. Phys. Lett. 93, 181109 (2008). [CrossRef]
  15. V. Apostolopoulos, L. Laversenne, T. Colomb, C. Depeursinge, R. P. Salathé, M. Pollnau, R. Osellame, G. Cerullo, and P. Laporta, “Femtosecond-irradiation-induced refractive-index changes and channel waveguiding in bulk Ti3+:sapphire,” Appl. Phys. Lett. 85, 1122–1124 (2004). [CrossRef]
  16. B. McMillen, K. P. Chen, and D. Jaque, “Microstructural imaging of high repetition rate ultrafast laser written LiTaO3waveguides,” Appl. Phys. Lett. 94, 081106 (2009). [CrossRef]
  17. S. M. Eaton, C. A. Merchant, R. Iyer, A. J. Zilkie, A. S. Helmy, J. S. Aitchison, P. R. Herman, D. Kraemer, R. J. D. Miller, C. Hnatovsky, and R. S. Taylor, “Raman gain from waveguides inscribed in KGd(WO4)2 by high repetition rate femtosecond laser,” Appl. Phys. Lett. 92, 081105 (2008). [CrossRef]
  18. A. Rodenas, G. A. Torchia, G. Lifante, E. Cantelar, J. Lamela, F. Jaque, L. Roso, and D. Jaque, “Refractive index change mechanisms in femtosecond laser written ceramic Nd:YAG waveguides: micro-spectroscopy experiments and beam propagation calculations,” Appl. Phys. B 95, 85–96 (2009). [CrossRef]
  19. J. Burghoff, S. Nolte, and A. Tünnermann, “Origins of waveguiding in femtosecond laser-structured LiNbO3,” Appl. Phys. A 89, 127–132 (2007). [CrossRef]
  20. R. Regener and W. Sohler, “Loss in low-finesse Ti:LiNbO3optical waveguide resonators,” Appl. Phys. B 36, 143–147(1985). [CrossRef]
  21. F. Chen, L. Wang, Y. Jiang, X. L. Wang, K. M. Wang, G. Fu, Q. M. Lu, C. E. Ruter, and D. Kip, “Optical channel waveguides in Nd:YVO4 crystal produced by O+ ion implantation,” Appl. Phys. Lett. 88, 071123 (2006). [CrossRef]
  22. RSoft Design Group, BeamPROP computer software (http://www.rsoftdesign.com).
  23. I. Mansour and F. Caccavale, “An improved procedure to calculate the refractive index profile from the measured near-field intensity,” J. Lightwave Technol. 14, 423–428 (1996). [CrossRef]
  24. Y. Tan, F. Chen, J. R. V. de Aldana, G. A. Torchia, A. Benayas, and D. Jaque, “Continuous wave laser generation at 1064 nm in femtosecond laser inscribed Nd:YVO4 channel waveguides,” Appl. Phys. Lett. 97, 031119 (2010). [CrossRef]
  25. B. Henderson and G. F. Imbusch, Optical Spectroscopy of Inorganic Solids (Oxford Science, 1989).
  26. I. V. Mochalov, “Laser and nonlinear properties of the potassium gadolinium tungstate laser crystal KGd(WO4)2:Nd3+−(KGW:Nd),” Opt. Eng. 36, 1660–1669 (1997). [CrossRef]
  27. W. F. Silva, C. Jacinto, A. Benayas, J. R. V. de Aldana, G. A. Torchia, F. Chen, Y. Tan, and D. Jaque, “Femtosecond-laser-written, stress-induced Nd:YVO4 waveguides preserving fluorescence and Raman gain,” Opt. Lett. 35, 916–918(2010). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited