OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 50, Iss. 6 — Feb. 20, 2011
  • pp: 943–951

Design strategies to simplify and miniaturize imaging systems

Florence de la Barrière, Guillaume Druart, Nicolas Guérineau, and Jean Taboury  »View Author Affiliations


Applied Optics, Vol. 50, Issue 6, pp. 943-951 (2011)
http://dx.doi.org/10.1364/AO.50.000943


View Full Text Article

Enhanced HTML    Acrobat PDF (648 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present the range of optical architectures for imaging systems based on a single optical component, an aperture stop, and a detector. Thanks to the formalism of third-order Seidel aberrations, several strategies of simplification and miniaturization of optical systems are examined. Figures of merit are also introduced to assess the basic optical properties and performance capabilities of such systems; by this way, we show the necessary trade-off between simplicity, miniaturization, and optical performance.

© 2011 Optical Society of America

OCIS Codes
(110.4190) Imaging systems : Multiple imaging
(220.1010) Optical design and fabrication : Aberrations (global)
(220.4830) Optical design and fabrication : Systems design
(110.3925) Imaging systems : Metrics

ToC Category:
Imaging Systems

History
Original Manuscript: September 17, 2010
Revised Manuscript: November 9, 2010
Manuscript Accepted: November 9, 2010
Published: February 17, 2011

Citation
Florence de la Barrière, Guillaume Druart, Nicolas Guérineau, and Jean Taboury, "Design strategies to simplify and miniaturize imaging systems," Appl. Opt. 50, 943-951 (2011)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-50-6-943


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. B. Rim, P. B. Catrysse, R. Dinyari, K. Huang, and P. Peumans, “The optical advantages of curved focal plane arrays,” Opt. Express 16, 4965–4971 (2008). [CrossRef] [PubMed]
  2. R. Völkel, M. Eisner, and K. J. Weible, “Miniaturized imaging systems,” Microelectron. Eng. 67–68, 461–472 (2003). [CrossRef]
  3. J. Duparré, P. Dannberg, P. Schreiber, A. Bräuer, and A. Tünnermann, “Artificial apposition compound eye fabricated by micro-optics technology,” Appl. Opt. 43, 4303–4310 (2004). [CrossRef] [PubMed]
  4. J. Duparré, P. Dannberg, P. Schreiber, A. Bräuer, and A. Tünnermann, “Thin compound eye camera,” Appl. Opt. 44, 2949–2956 (2005). [CrossRef] [PubMed]
  5. J. Duparré, P. Schreiber, A. Matthes, E. Pshenay-Severin, A. Bräuer, A. Tünnermann, R. Vo¨lkel, M. Eisner, and T. Scharf, “Microoptical telescope compound eye,” Opt. Express 13, 889–903 (2005). [CrossRef] [PubMed]
  6. J. W. Duparré, and F. C. Wipermann, “Micro-optical artificial compound eyes,” Bioinsp. Biomim. 1, R1–R16 (2006). [CrossRef]
  7. G. Druart, N. Guérineau, R. Haïdar, S. Thétas, J. Taboury, S. Rommeluère, J. Primot, and M. Fendler, “Demonstration of an infrared microcamera inspired by Xenos Peckii vision,” Appl. Opt. 48, 3368–3374 (2009). [CrossRef] [PubMed]
  8. J. Tanida, T. Kumagai, K. Yamada, S. Miyatake, K. Ishida, T. Morimoto, N. Kondou, D. Miyazaki, and Y. Ichioka, “Thin observation module by bound optics (TOMBO): Concept and experimental verification,” Appl. Opt. 40, 1806–1813 (2001). [CrossRef]
  9. G. Druart, N. Guérineau, J. Taboury, S. Rommeluère, R. Haïdar, J. Primot, M. Fendler, and J. C. Cigna, “Compact infrared pinhole fisheye for wide field applications,” Appl. Opt. 48, 1104–1113 (2009). [CrossRef]
  10. S. R. Wilk, “Ancient optics: Producing magnification without lenses,” Opt. Photonics News 17 (4), 12–13 (2006).
  11. G. Andersen and D. Tullson, “Broadband antihole photon sieve telescope,” Appl. Opt. 46, 3706–3708 (2007). [CrossRef] [PubMed]
  12. E. E. Fenimore and T. M. Cannon, “Coded aperture imaging with uniformly redundant arrays,” Appl. Opt. 17, 337–347 (1978). [CrossRef] [PubMed]
  13. S. R. Gottesman and E. E. Fenimore, “New family of binary arrays for coded aperture imaging,” Appl. Opt. 28, 4344–4352 (1989). [CrossRef] [PubMed]
  14. G. Druart, N. Guérineau, R. Haïdar, J. Primot, A. Kattnig, and J. Taboury, “Image formation by use of continuously self-imaging gratings and diffractive axicons,” Proc. SPIE 6712, 671208 (2007). [CrossRef]
  15. G. Druart, J. Taboury, N. Guérineau, R. Haïdar, H. Sauer, A. Kattnig, and J. Primot, “Demonstration of image-zooming capability for diffractive axicons,” Opt. Lett. 33, 366–368 (2008). [CrossRef] [PubMed]
  16. G. Mikula, A. Kolodziejczyk, M. Makowski, C. Prokopowicz, and M. Sypek, “Diffractive elements for imaging with extended depth of focus,” Opt. Eng. (Bellingham, Wash.) 44, 058001 (2005). [CrossRef]
  17. N. Davidson, A. A. Friesem, and E. Hasman, “Holographic axilens: High resolution and long focal depth,” Opt. Lett. 16, 523–525 (1991). [CrossRef] [PubMed]
  18. E. J. Tremblay, R. A. Stack, R. L. Morrison, and J. E. Ford, “Ultrathin cameras using annular folded optics,” Appl. Opt. 46, 463–471 (2007). [CrossRef] [PubMed]
  19. E. J. Tremblay, R. A. Stack, R. L. Morrison, J. H. Karp, and J. E. Ford, “Ultrathin four-reflection imager,” Appl. Opt. 48, 343–354 (2009). [CrossRef] [PubMed]
  20. A. W. Lohmann, “Scaling laws for lens systems,” Appl. Opt. 28, 4996–4998 (1989). [CrossRef] [PubMed]
  21. M. W. Haney, “Performance scaling in flat imagers,” Appl. Opt. 45, 2901–2910 (2006). [CrossRef] [PubMed]
  22. J. W. Goodman, Introduction to Fourier Optics, 3rd ed.(Roberts and Company, 2005), p. 107.
  23. J. W. Goodman, Introduction to Fourier Optics, 3rd ed.(Roberts and Company, 2005), p. 146.
  24. M. Born and E. Wolf, Principles of Optics, 6th ed. (Pergamon, 1989), p. 211.
  25. M. Born and E. Wolf, Principles of Optics, 6th ed. (Pergamon, 1989), p. 213.
  26. M. Born and E. Wolf, Principles of Optics, 6th ed. (Pergamon, 1989), p. 228.
  27. M. Born and E. Wolf, Principles of Optics, 6th ed. (Pergamon, 1989), p. 468.
  28. G. Druart, N. Guérineau, R. Haïdar, M. Tauvy, S. Thétas, S. Rommeluère, J. Primot, J. Deschamps, and E. Lambert, “MULTICAM: A miniature cryogenic camera for infrared detection,” Proc. SPIE 6992, 699215 (2008).
  29. D. J. Brady, “Micro-optics and megapixels,” Opt. Photonics News , 17(11), 24–29 (2006). [CrossRef]
  30. F. de la Barrière, G. Druart, N. Guérineau, J. Taboury, and M. Fendler, “Integration of advanced optical functions near the focal plane array: First steps towards the on-chip infrared camera,” Proc. SPIE 7787, 778706 (2010). [CrossRef]
  31. G. Druart, N. Guérineau, R. Haïdar, J. Primot, P. Chavel, and J. Taboury, “Nonparaxial analysis of continuous self-imaging gratings in oblique illumination,” J. Opt. Soc. Am. A 24, 3379–3387 (2007). [CrossRef]
  32. N. A. Ahuja and N. K. Bose, “Design of large field-of-view high-resolution miniaturized imaging system,” EURASIP J. Adv. Signal Process. 2007, 1 (2007). [CrossRef]
  33. L. C. Laycock and V. A. Handerek, “Multi-aperture imaging device for airborne platforms,” Proc. SPIE 6737, 673709 (2007). [CrossRef]
  34. F. de la Barrière, G. Druart, N. Guérineau, J. Taboury, J. Primot, and J. Deschamps, “Modulation transfer function measurement of a multichannel optical system,” Appl. Opt. 49, 2879–2890 (2010). [CrossRef] [PubMed]
  35. A. Papoulis, “Generalized sampling expansion,” IEEE Trans. Circuits Syst. 24, 652–654 (1977). [CrossRef]
  36. A. V. Kanaev, J. R. Ackerman, E. F. Fleet, and D. A. Scribner, “TOMBO sensor with scene-independent superresolution processing,” Opt. Lett. 32, 2855–2857 (2007). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited