OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 50, Iss. 6 — Feb. 20, 2011
  • pp: 952–961

Performance of a laser Earth-to-satellite link over turbulence and beam wander using the modulated gamma–gamma irradiance distribution

Harilaos G. Sandalidis  »View Author Affiliations

Applied Optics, Vol. 50, Issue 6, pp. 952-961 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (867 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present an analytical framework for the performance evaluation of laser satellite uplinks over the major probabilistic impairments, i.e., atmospheric turbulence and beam wander. Specifically, we consider a ground-station-to-space laser uplink with a Gaussian beam wave model, and we focus on the particular regime assuming untracked beams where beam wandering takes place. In that regime, the modulated gamma–gamma distribution has been proposed as an effective irradiance model to characterize the combined effect of turbulence and beam wander. First we provide a closed-form expression of the probability density function and deduce the fundamental statistics of the new model. Then we evaluate the performance of the laser system assuming coherent detection for several modulation schemes. An appropriate set of numerical results is presented to verify the accuracy of the derived expressions.

© 2011 Optical Society of America

OCIS Codes
(010.1300) Atmospheric and oceanic optics : Atmospheric propagation
(010.3310) Atmospheric and oceanic optics : Laser beam transmission
(010.7060) Atmospheric and oceanic optics : Turbulence

ToC Category:
Atmospheric and Oceanic Optics

Original Manuscript: October 27, 2010
Revised Manuscript: January 2, 2011
Manuscript Accepted: January 9, 2011
Published: February 17, 2011

Harilaos G. Sandalidis, "Performance of a laser Earth-to-satellite link over turbulence and beam wander using the modulated gamma–gamma irradiance distribution," Appl. Opt. 50, 952-961 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. L. Andrews, R. L. Philips, and C. Y. Hopen, Laser Beam Propagation through Random Media (SPIE Press, 2005). [CrossRef]
  2. M. Toyoshima, Y. Takayama, T. Takahashi, K. Suzuki, S. Kimura, K. Takizawa, T. Kuri, W. Klaus, M. Toyoda, H. Kunimori, T. Jono, and K. Arai, “Ground-to-satellite laser communication experiments,” IEEE Aerosp. Electron. Syst. Mag. 23, 10–18 (2008). [CrossRef]
  3. P. J. Titterton, “Power reduction and fluctuations caused by narrow laser beam motion in the far field” Appl. Opt. 12, 423–425 (1973). [CrossRef] [PubMed]
  4. F. Dios, J. A. Rubio, A. Rodríguez, and A. Comerón, “Scintillation and beam-wander analysis in an optical ground station-satellite uplink,” Appl. Opt. 43, 3866–3873 (2004). [CrossRef] [PubMed]
  5. A. Rodríguez-Gomez, F. Dios, J. A. Rubio, and A. Comerón, “Temporal statistics of the beam-wander contribution to scintillation in ground-to-satellite optical links: an analytical approach,” Appl. Opt. 44, 4574–4581 (2005). [CrossRef] [PubMed]
  6. J. Ma, Y. Jiang, L. Tan, S. Yu, and W. Du, “Influence of beam wander on bit-error rate in a ground-to-satellite laser uplink communication system,” Opt. Lett. 33, 2611–2613 (2008). [CrossRef] [PubMed]
  7. H. Guo, B. Luo, Y. Ren, S. Zhao, and A. Dhang, “Influence of beam wander on uplink of ground-to-satellite laser communication and optimization for transmitter beam radius,” Opt. Lett. 35, 1977–1979 (2010). [CrossRef] [PubMed]
  8. L. C. Andrews, R. L. Philips, R. J. Sasiela, and R. R. Parenti, “Strehl ratio and scintillation theory for uplink Gaussian-beam waves: beam wander effects,” Opt. Eng. 45, 076001 (2006). [CrossRef]
  9. L. C. Andrews and R. L. Philips, “Recent results on optical scintillation in the presence of beam wander,” Proc. SPIE 6878, 687802 (2008). [CrossRef]
  10. L. C. Andrews, R. L. Philips, R. J. Sasiela, and R. Parenti, “PDF models for uplink to space in the presence of beam wander,” Proc. SPIE 6551, 655109 (2007). [CrossRef]
  11. H. G. Sandalidis, “Performance analysis of a laser ground station-to-satellite link with modulated gamma distributed irradiance fluctuations,” J. Opt. Commun. Netw. 2, 938–943(2010). [CrossRef]
  12. K.-P. Ho, Phase-Modulated Optical Communication Systems (Springer-Verlag, 2005).
  13. A. Belmonte and J. M. Kahn, “Performance of synchronous optical receivers using atmospheric compensation techniques,” Opt. Express 16, 14151–14162 (2008). [CrossRef] [PubMed]
  14. A. Belmonte and J. M. Kahn, “Efficiency of complex modulation methods in coherent free-space optical links,” Opt. Express 18, 3928–3937 (2010). [CrossRef] [PubMed]
  15. V. W. S. Chan, “Optical satellite networks,” J. Lightwave Technol. 21, 2811–2927 (2003). [CrossRef]
  16. D. L. Fried, “Statistics of laser beam fade induced by pointing jitter,” Appl. Opt. 12, 422–423 (1973). [CrossRef] [PubMed]
  17. V. S. Adamchik and O. I. Marichev, “The algorithm for calculating integrals of hypergeometric type functions and its realization to REDUCE system,” in Proceedings of the International Conference on Symbolic and Algebraic Computation (ACM, 1990), pp. 212–224.
  18. I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and Products, 7th ed. (Academic, 2007).
  19. X. Zhu and J. M. Kahn, “Free-space optical communication through atmospheric turbulence channels,” IEEE Trans. Commun. 50, 1293–1300 (2002). [CrossRef]
  20. E. Ip, A. P. T. Lau, D. J. F. Barros, and J. M. Kahn, “Coherent detection in optical fiber systems,” Opt. Express 16, 753–791(2008). [CrossRef] [PubMed]
  21. Wolfram, “The Wolfram functions site,” http://functions.wolfram.com.
  22. H. G. Sandalidis, T. A. Tsiftsis, and G. K. Karagiannidis, “Optical wireless communications with heterodyne detection over turbulence channels with pointing errors,” J. Lightwave Technol. 27, 4440–4445 (2009). [CrossRef]
  23. M. K. Simon and M.-S. Alouini, Digital Communication over Fading Channels, 2nd ed. (Wiley, 2005).
  24. J. G. Proakis, Digital Communications, 4th ed. (McGraw-Hill, 2001).
  25. Y. E. Yenice and B. G. Evans, “Adaptive beam-size control scheme for ground-to-satellite optical communications,” Opt. Eng. 38, 1889–1895 (1999). [CrossRef]
  26. R. K. Tyson, D. E. Canning, and J. S. Tharp “Measurement of the bit-error rate of an adaptive optics, free-space laser communications system, part 1: tip-tilt configuration, diagnostics, and closed-loop results,” Opt. Eng. 44, 096002 (2005). [CrossRef]
  27. V. V. Nikulin, J. Sofka, and R. M. Khandekar, “Effect of the sampling rate of the tracking system on free-space laser communications,” Opt. Eng. 47, 036003 (2008). [CrossRef]
  28. T. A. Tsiftsis, H. G. Sandalidis, G. K. Karagiannidis, and M. Uysal, “Optical wireless links with spatial diversity over strong atmospheric turbulence channels,” IEEE Trans. Wireless Commun. 8, 951–957 (2009). [CrossRef]
  29. E. Bayaki, R. Schober, and R. K. Mallik, “Performance analysis of MIMO free-space optical systems in gamma-gamma fading,” IEEE Trans. Commun. 57, 3415–3424 (2009). [CrossRef]
  30. H. G. Sandalidis, “Coded free-space optical links over strong turbulence and misalignment fading channels,” IEEE Trans. Commun. (to be published). [CrossRef]
  31. M. Abramovitz and I. A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th ed. (Dover, 1972).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited