OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 50, Iss. 7 — Mar. 1, 2011
  • pp: 1038–1046

Spatial–spectral volume holographic systems: resolution dependence on effective thickness

Jose M. Castro, John Brownlee, Yuan Luo, Erich de Leon, Jennifer K. Barton, George Barbastathis, and Raymond K. Kostuk  »View Author Affiliations

Applied Optics, Vol. 50, Issue 7, pp. 1038-1046 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (960 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The resolution dependence of spatial-spectral volume holographic imaging systems on angular and spectral bandwidth of nonuniform gratings is investigated. Modeling techniques include a combination of the approximate coupled-wave analysis and the transfer-matrix method for holograms recorded in absorptive media. The effective thickness of the holograms is used as an estimator of the resolution of the imaging systems. The methodology, which assists in the design and optimization of volume holographic simulation results based on our approach, are confirmed with experiments and show proof of consistency and usefulness of the proposed models.

© 2011 Optical Society of America

OCIS Codes
(090.2890) Holography : Holographic optical elements
(090.4220) Holography : Multiplex holography
(090.7330) Holography : Volume gratings
(110.0110) Imaging systems : Imaging systems

ToC Category:

Original Manuscript: October 7, 2010
Revised Manuscript: December 23, 2010
Manuscript Accepted: January 6, 2011
Published: February 28, 2011

Jose M. Castro, John Brownlee, Yuan Luo, Erich de Leon, Jennifer K. Barton, George Barbastathis, and Raymond K. Kostuk, "Spatial–spectral volume holographic systems: resolution dependence on effective thickness," Appl. Opt. 50, 1038-1046 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. Fujimoto and D. Farkas, Biomedical Optical Imaging(Oxford University, 2009).
  2. A. Sinha, W. Sun, T. Shih, and G. Barbastathis, “Volume holographic imaging in transmission geometry,” Appl. Opt. 43, 1533–1551 (2004). [CrossRef] [PubMed]
  3. Z. Li, D. Psaltis, W. Liu, W. R. Johnson, and G. Bearman, “Volume holographic spectral imaging,” Proc. SPIE 5694, 33–40 (2005). [CrossRef]
  4. A. Sinha and G. Barbastathis, “Broadband volume holographic imaging,” Appl. Opt. 43, 5214–5221 (2004). [CrossRef] [PubMed]
  5. Y. Luo, P. J. Gelsinger, G. Barbastathis, J. K. Barton, and R. K. Kostuk, “Optimization of multiplexed holographic gratings in PQ-PMMA for spectral-spatial filters,” Opt. Lett. 33, 566–568 (2008). [CrossRef] [PubMed]
  6. P. J. Gelsinger-Austin, Y. Luo, J. M. Watson, R. K. Kostuk, G. Barbastathis, J. K. Barton, and J. M. Castro, “Optical design for a spatial-spectral volume holographic imaging system,” Opt. Eng. 49, 043001 (2010). [CrossRef]
  7. Y. Lou, J. M. Castro, J. Barton, R. K. Kostuk, and G. Barbastathis, “Simulation and experiments of non-uniform multiplexed gratings in volume holographic imaging systems,” Opt. Express 18, 19273–19285 (2010). [CrossRef]
  8. A. Sato and R. K. Kostuk, “Holographic grating for dense wavelength division optical filters at 1550 nm using phenanthrenequinone doped poly(methylmethacrylate),” Proc. SPIE 5216, 44–52 (2003). [CrossRef]
  9. H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969).
  10. L. Solymar and D. J. Cooke, Volume Holography and Volume Gratings (Academic, 1981).
  11. J. Goodman, Introduction to Fourier Optics (McGraw-Hill, 1996).
  12. D. Kermish, “Nonuniform sinusoidally modulated dielectric gratings,” J. Opt. Soc. Am. 59, 1409–1414 (1969). [CrossRef]
  13. R. Kowarschik, “Diffraction efficiency of attenuated sinusoidally modulated gratings in volume holograms,” J. Mod. Opt. 23, 1039–1051 (1976). [CrossRef]
  14. T. Kubota, “The diffraction efficiency of holograms gratings recorded in an absorptive medium,” Opt. Commun. 16, 347–349 (1976). [CrossRef]
  15. S. Gallego, M. Ortuño, C. Neipp, A. Marquez, A. Belendez, I. Pascual, J. V. Kelly, and J. T. Sheridan, “Physical and effective optical thickness of holographic diffraction gratings recorded in photopolymers,” Opt. Express 13, 1939–1947 (2005). [CrossRef] [PubMed]
  16. C. Neipp, J. T. Sheridan, S. Gallego, M. Ortuño, A. Marquez, I. Pascual, and A. Belenez, “Effect of depth attenuated refractive index profile in the angular responses of the efficiency of higher order in volume gratings recorded in a PVA/acrylamide photopolymer,” Opt. Commun. 233, 311–322 (2004). [CrossRef]
  17. V. V. Shelkovnikov, E. F. Pen, and V. I. Kovalevsky, “Optimum optical density of the absorbing holographic materials,” Opt. Mem. Neural Netw. 16, 75–83 (2007). [CrossRef]
  18. W. Liu, D. Psaltis, and G. Barbastathis, “Real-time spectral imaging in three spatial dimensions,” Opt. Lett. 27, 854–856 (2002). [CrossRef]
  19. S. B. Oh, J. M. Watson, and G. Barbastathis, “Theoretical analysis of curved Bragg diffraction images from plane reference volume holograms,” Appl. Opt. 48, 5984–5996(2009). [CrossRef] [PubMed]
  20. J. M. Castro, E. de Leon, J. K. Barton, and R. K. Kostuk, “Analysis of diffracted image patterns from volume holographic imaging systems and applications to imaging processing,” Appl. Opt. 50, 170–176(2011). [CrossRef] [PubMed]
  21. U. V. Mahilny, D. N. Marmysh, A. I. Stankevich, A. L. Tolstik, V. Matusevich, and R. Kowarschik, “Holographic volume absorption grating in glass-like polymer recording material,” Appl. Phys. B 82, 299–302 (2005). [CrossRef]
  22. R. K. Kostuk, W. Maeda, Ch. H.Chen, I. Djordjevic, and B. Vasic, “Cascaded holographic polymer reflection grating filters for optical–code-division multiple-access applications,” Appl. Opt. 44, 7581–7586 (2005). [CrossRef] [PubMed]
  23. M. G. Moharam and T. K. Gaylord, “Three-dimensional vector coupled-wave analysis of planar-grating diffraction,” J. Opt. Soc. Am. 73, 1105–1112 (1983). [CrossRef]
  24. M. G. Moharam and T. K. Gaylord, “Rigorous coupled-wave analysis of planar-grating diffraction,” J. Opt. Soc. Am. 71, 811–818 (1981). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited