OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 50, Iss. 7 — Mar. 1, 2011
  • pp: 992–998

Thermostable refractive index sensors based on whispering gallery modes in a microsphere coated with poly(methyl methacrylate)

Nai Lin, Lan Jiang, Sumei Wang, Hai Xiao, Yongfeng Lu, and Hailung Tsai  »View Author Affiliations


Applied Optics, Vol. 50, Issue 7, pp. 992-998 (2011)
http://dx.doi.org/10.1364/AO.50.000992


View Full Text Article

Enhanced HTML    Acrobat PDF (519 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

This study proposes a thermostable refractive index (RI) sensor consisting of a silica microsphere coated with a poly(methyl methacrylate) (PMMA) layer. The first-order and second-order whispering gallery modes (WGMs) of both TE and TM polarizations are considered theoretically. The layer thickness is carefully optimized to eliminate the thermal drift and enhance the RI sensitivity and detection limit. In various WGMs, at the thermostable thickness of the PMMA layer, the first-order TM mode corresponds to the highest sensitivity and the smallest detection limit. The theoretical predictions provide guidelines for the design and fabrication of thermostable RI sensors.

© 2011 Optical Society of America

OCIS Codes
(140.4780) Lasers and laser optics : Optical resonators
(140.3948) Lasers and laser optics : Microcavity devices
(280.4788) Remote sensing and sensors : Optical sensing and sensors

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: December 3, 2010
Manuscript Accepted: December 29, 2010
Published: February 23, 2011

Virtual Issues
Vol. 6, Iss. 4 Virtual Journal for Biomedical Optics

Citation
Nai Lin, Lan Jiang, Sumei Wang, Hai Xiao, Yongfeng Lu, and Hailung Tsai, "Thermostable refractive index sensors based on whispering gallery modes in a microsphere coated with poly(methyl methacrylate)," Appl. Opt. 50, 992-998 (2011)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-50-7-992


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. L. Corodetsky, A. A. Savchenkov, and V. S. Ilchenko, “Ultimate Q of optical microsphere resonators,” Opt. Lett. 21, 453–455 (1996). [CrossRef]
  2. F. Vollmer and S. Arnord, “Whispering-gallery-mode biosensing: label-free detection down to single molecules,” Nat. Methods 5, 591–596 (2008). [CrossRef] [PubMed]
  3. N. M. Hanumegowda, I. M. White, and X. Fan, “Aqueous mercuric ion detection with microsphere optical ring resonator sensors,” Sens. Actuators B Chem. 120, 207–212 (2006). [CrossRef]
  4. H. Y. Zhu, J. D. Suter, I. M. White, and X. D. Fan, “Aptamer based microsphere biosensor for thrombin detection,” Sensors 6, 785–795 (2006). [CrossRef]
  5. F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold, “Protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett. 80, 4057–4059 (2002). [CrossRef]
  6. S. Arnold, M. Khoshsima, I. Teraoka, S. Holler, and F. Vollmer, “Shift of whispering-gallery modes in microspheres by protein adsorption,” Opt. Lett. 28, 272–274 (2003). [CrossRef] [PubMed]
  7. E. Krioukov, D. J. W. Klunder, A. Driessen, J. Greve, and C. Otto, “Sensor based on an integrated optical microcavity,” Opt. Lett. 27, 512–514 (2002). [CrossRef]
  8. N. M. Hanumegowda, C. J. Stica, B. C. Patel, I. M. White, and X. Fan, “Refractometric sensors based on microsphere resonators,” Appl. Phys. Lett. 87, 201107 (2005). [CrossRef]
  9. I. Teraoka and S. Arnold, “Perturbation approach to resonance shifts of whispering-gallery modes in a dielectric microsphere as a probe of a surrounding medium,” J. Opt. Soc. Am. B 20, 1937–1946 (2003). [CrossRef]
  10. I. Teraoka and S. Arnold, “Theory of resonance shifts in TE and TM whispering gallery modes by nonradial perturbations for sensing applications,” J. Opt. Soc. Am. B 23, 1381–1389(2006). [CrossRef]
  11. I. Teraoka and S. Arnold, “Enhancing the sensitivity of a whispering-gallery mode microsphere sensor by a high-refractive-index surface layer,” J. Opt. Soc. Am. B 23, 1434–1442 (2006). [CrossRef]
  12. I. Teraoka and S. Arnold, “Whispering-gallery modes in a microsphere coated with a high-refractive index layer: polarization-dependent sensitivity enhancement of the resonance-shift sensor and TE-TM resonance matching,” J. Opt. Soc. Am. B 24, 653–659 (2007). [CrossRef]
  13. I. M. White and X. Fan, “On the performance quantification of resonant refractive index sensors,” Opt. Express 16, 1020–1028 (2008). [CrossRef] [PubMed]
  14. M. Han and A. Wang, “Temperature compensation of optical microresonators using a surface layer with negative thermo-optic coefficient,” Opt. Lett. 32, 1800–1802 (2007). [CrossRef] [PubMed]
  15. L. He, Y. F. Xiao, C. Dong, J. Zhu, V. Gaddam, and L. Yang, “Compensation of thermal refraction effect in high-Q toroidal microresonator by polydimethylsiloxane coating,” Appl. Phys. Lett. 93, 201102 (2008). [CrossRef]
  16. J. M. Cariou, J. Dugas, L. Martin, and P. Michel, “Refractive-index variations with temperature of PMMA and polycarbonate,” Appl. Opt. 25, 334–336 (1986). [CrossRef] [PubMed]
  17. Y. Takezawa, N. Taketani, S. Tanno, and S. Ohara, “Empirical estimation method of intrinsic loss spectra in transparent amorphous polymers for plastic optical fibers,” J. Appl. Polym. Sci. 46, 1835–1841 (1992). [CrossRef]
  18. C. H. Dong, F. W. Sun, C. L. Zou, X. F. Ren, G. C. Guo, and Z. F. Han, “High-Q silica microsphere by poly(methyl methacrylate) coating and modifying,” Appl. Phys. Lett. 96, 061106 (2010). [CrossRef]
  19. A. B. Matsko and V. S. Ilchenko, “Optical resonators with whispering-gallery modes—Part I: Basics,” IEEE J. Quantum Electron. 12, 3–14 (2006). [CrossRef]
  20. R. L. Hightower and C. B. Richardson, “Resonant Mie scattering from a layered sphere,” Appl. Opt. 27, 4850–4855 (1988). [CrossRef] [PubMed]
  21. B. E. Little, J. P. Laine, and H. A. Haus, “Analytic theory of coupling from tapered fibers and half-blocks into microsphere resonators,” J. Lightwave Technol. 17, 704–715 (1999). [CrossRef]
  22. B. B. Li, Q. Y. Wang, Y. F. Xiao, X. F. Jiang, Y. Li, L. X. Xiao, and Q. H. Cong, “On chip, high-sensitivity thermal sensor based on high-Q polydimethylsiloxane-coated microresonator,” Appl. Phys. Lett. 96, 251109 (2010). [CrossRef]
  23. C. Y. Chao and L. J. Guo, “Design and optimization of microring resonators in biochemical sensing applications,” J. Lightwave Technol. 24, 1395–1402 (2006). [CrossRef]
  24. E. S. Kang, T. H. Lee, and B. S. Bae, “Measurement of the thermo-optic coefficients in sol-gel derived inorganic-organic hybrid material films,” Appl. Phys. Lett. 81, 1438–1440(2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited