OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 50, Iss. 7 — Mar. 1, 2011
  • pp: B12–B17

Implementation of single-beam multiplexing encoding with a dually modulated spatial light modulator

Wei Jia, Zhongyu Chen, Fung Jacky Wen, and Po Sheun Chung  »View Author Affiliations


Applied Optics, Vol. 50, Issue 7, pp. B12-B17 (2011)
http://dx.doi.org/10.1364/AO.50.000B12


View Full Text Article

Enhanced HTML    Acrobat PDF (600 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We propose a novel method for signal storage and encryption, called single-beam multiplexing encoding. The single beam is composed of an inside signal beam and an outside reference beam. The signal beam is amplitude modulated, and the reference beam is phase modulated. The dual modulation is implemented by a spatial light modulator (SLM). Multiplexing holography with different reference beams from different directions, called directional multiplexing, is analyzed in detail. With an SLM based on a twisted nematic liquid crystal display, we demonstrate a single-beam directional multiplexing method using a holographic encoding technique, and the retrieved signals are presented. This encoding system is more stable, miniaturized, and flexible. It should be of great interest for applications in signal encryption as well as for high-capacity data storage.

© 2011 Optical Society of America

OCIS Codes
(090.4220) Holography : Multiplex holography
(210.1635) Optical data storage : Coding for optical storage

History
Original Manuscript: June 1, 2010
Revised Manuscript: August 31, 2010
Manuscript Accepted: September 10, 2010
Published: October 14, 2010

Citation
Wei Jia, Zhongyu Chen, Fung Jacky Wen, and Po Sheun Chung, "Implementation of single-beam multiplexing encoding with a dually modulated spatial light modulator," Appl. Opt. 50, B12-B17 (2011)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-50-7-B12


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. Gabor, “A new microscopic principle,” Nature 161, 777–778 (1948). [CrossRef] [PubMed]
  2. N. Warnasooriya, F. Joud, P. Bun, G. Tessier, M. Coppey-Moisan, P. Desbiolles, M. Atlan, M. Abboud, and M. Gross, “Imaging gold nanoparticles in living cell environments using heterodyne digital holographic microscopy,” Opt. Express 18, 3264–3273 (2010). [CrossRef] [PubMed]
  3. M. Salvador, J. Prauzner, S. Köber, K. Meerholz, J. Turek, K. Jeong, and D. Nolte, “Three-dimensional holographic imaging of living tissue using a highly sensitive photorefractive polymer device,” Opt. Express 17, 11834–11849 (2009). [CrossRef] [PubMed]
  4. E. Y. Lam, X. Zhang, H. Vo, T.-C. Poon, and G. Indebetouw, “Three-dimensional microscopy and sectional image reconstruction using optical scanning holography,” Appl. Opt. 48, H113–H119 (2009). [CrossRef] [PubMed]
  5. S. Wang, S. Huang, X. Zhang, and W. Wu, “Hologram-based watermarking capable of surviving print-scan process,” Appl. Opt. 49, 1170–1178 (2010). [CrossRef] [PubMed]
  6. J. Li, X. Zhang, S. Liu, and X. Ren, “Adaptive watermarking scheme using a gray-level computer generated hologram,” Appl. Opt. 48, 4858–4865 (2009). [CrossRef] [PubMed]
  7. L. Tian, N. Loomis, J. A. Domínguez-Caballero, and G. Barbastathis, “Quantitative measurement of size and three-dimensional position of fast-moving bubbles in air–water mixture flows using digital holography,” Appl. Opt. 49, 1549–1554 (2010). [CrossRef] [PubMed]
  8. A. Nelleri, J. Joseph, and K. Singh, “Digital holographic encryption,” in Digital Holography and Three-Dimensional Imaging, OSA Technical Digest (CD) (Optical Society of America, 2009), paper DTuB1.
  9. N. Zhu, Y.-T. Wang, J. Liu, J.-H. Xie, and H. Zhang, “Optical image encryption based on interference of polarized light,” Opt. Express 17, 13418–13424 (2009). [CrossRef] [PubMed]
  10. Y. Zhang and B. Wang, “Optical image encryption based on interference,” Opt. Lett. 33, 2443–2445 (2008). [CrossRef] [PubMed]
  11. F. H. Mok, “Angle-multiplexed storage of 5000 holograms in lithium niobate,” Opt. Lett. 18, 915–917 (1993). [CrossRef] [PubMed]
  12. C. Denz, T. Dellwig, J. Lembcke, and T. Tschudi, “Parallel optical image addition and subtraction in a dynamic photorefractive memory by phase-code multiplexing,” Opt. Lett. 21, 278–280 (1996). [CrossRef] [PubMed]
  13. C. Denz, G. Pauliat, G. Roosen, and T. Tschudi, “Potentialities and limitations of hologram multiplexing by using the phase-encoding technique,” Appl. Opt. 31, 5700–5705(1992). [CrossRef] [PubMed]
  14. G. A. Rakuljic, V. Leyva, and A. Yariv, “Optical data storage by using orthogonal wavelength-multiplexed volume holograms,” Opt. Lett. 17, 1471–1473 (1992). [CrossRef] [PubMed]
  15. D. Psaltis, M. Levene, A. Pu, and G. Barbastathis, “Holographic storage using shift multiplexing,” Opt. Lett. 20, 782–784 (1995). [CrossRef] [PubMed]
  16. H. Horimai, X. Tan, and J. Li, “Collinear holography,” Appl. Opt. 44, 2575–2579 (2005). [CrossRef] [PubMed]
  17. T. Shimura, S. Ichimura, R. Fujimura, K. Kuroda, X. Tan, and H. Horimai, “Analysis of a collinear holographic storage system: introduction of pixel spread function,” Opt. Lett. 31, 1208–1210 (2006). [CrossRef] [PubMed]
  18. H. Horimai and X. Tan, “Collinear technology for a holographic versatile disk,” Appl. Opt. 45, 910–914 (2006). [CrossRef] [PubMed]
  19. H. Choi and J. W. Wu, “Optical properties of holographically generated twisted nematic liquid-crystal gratings,” J. Opt. Soc. Am. B 26, 1–9 (2009). [CrossRef]
  20. D. W. Berreman, “Dynamics of liquid-crystal twist cells,” Appl. Phys. Lett. 25, 12–15 (1974). [CrossRef]
  21. Z. Y. Chan and P. S. Chung, “Using dual modulation modes in spatial light modulator (SLM) for a novel single-beam image storage and retrieval system,” Proc. SPIE 7723, 77231M(2010). [CrossRef]
  22. J. F. Heanue, M. C. Bashaw, A. J. Daiber, R. Snyder, and L. Hesselink, “Digital holographic storage system incorporating thermal fixing in lithium niobate,” Opt. Lett. 21, 1615–1617(1996). [CrossRef] [PubMed]
  23. D. L. Staebler and W. Phillips, “Fe-doped LiNbO3 for read-write applications,” Appl. Opt. 13, 788–794 (1974). [CrossRef] [PubMed]
  24. Z. Y. ChenP. S. Chung, “A high-capacity storage device for communications and multimedia systems,” Proc. SPIE , 6775, 67750S (2007). [CrossRef]
  25. E. G. van Putten, I. M. Vellekoop, and A. P. Mosk, “Spatial amplitude and phase modulation using commercial twisted nematic LCDs,” Appl. Opt. 47, 2076–2081 (2008). [CrossRef] [PubMed]
  26. Holoeye Photonics AG and Holoeye Corporation, http://www.Holoeye.com/.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited