OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 50, Iss. 7 — Mar. 1, 2011
  • pp: B58–B70

Quantization noise and its reduction in lensless Fourier digital holography

Nitesh Pandey and Bryan Hennelly  »View Author Affiliations


Applied Optics, Vol. 50, Issue 7, pp. B58-B70 (2011)
http://dx.doi.org/10.1364/AO.50.000B58


View Full Text Article

Enhanced HTML    Acrobat PDF (2004 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Digital holography is an imaging technique that enables recovery of topographic 3D information about an object under investigation. In digital holography, an interference pattern is recorded on a digital camera. Therefore, quantization of the recorded hologram is an integral part of the imaging process. We study the influence of quantization error in the recorded holograms on the fidelity of both the intensity and phase of the reconstructed image. We limit our analysis to the case of lensless Fourier off-axis digital holograms. We derive a theoretical model to predict the effect of quantization noise and we validate this model using experimental results. Based on this, we also show how the resultant noise in the reconstructed image, as well as the speckle that is inherent in digital holography, can be conveniently suppressed by standard speckle reduction techniques. We show that high-quality images can be obtained from binary holograms when speckle reduction is performed.

© 2011 Optical Society of America

OCIS Codes
(070.0070) Fourier optics and signal processing : Fourier optics and signal processing
(110.2970) Imaging systems : Image detection systems
(110.4280) Imaging systems : Noise in imaging systems
(090.1995) Holography : Digital holography

History
Original Manuscript: August 30, 2010
Manuscript Accepted: November 3, 2010
Published: January 10, 2011

Citation
Nitesh Pandey and Bryan Hennelly, "Quantization noise and its reduction in lensless Fourier digital holography," Appl. Opt. 50, B58-B70 (2011)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-50-7-B58

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

If you are accessing the full text through a member bundle, please use the Enhanced HTML link to gain access to the citation lists and other restricted features. Note that accessing both the PDF and HTML versions of an article will count as only one download against your account.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

If you are accessing the full text through a member bundle, please use the Enhanced HTML link to gain access to the citation lists and other restricted features. Note that accessing both the PDF and HTML versions of an article will count as only one download against your account.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

If you wish to use one of your free member downloads to view the figures, click "Enhanced HTML" above and access the figures from the article itself or from the navigation tab.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

If you are accessing the full text through a member bundle, please use the Enhanced HTML link to gain access to the citation lists and other restricted features. Note that accessing both the PDF and HTML versions of an article will count as only one download against your account.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited