OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 50, Iss. 8 — Mar. 10, 2011
  • pp: 1065–1081

Simulation of the optical properties of plate aggregates for application to the remote sensing of cirrus clouds

Yu Xie, Ping Yang, George W. Kattawar, Bryan A. Baum, and Yongxiang Hu  »View Author Affiliations


Applied Optics, Vol. 50, Issue 8, pp. 1065-1081 (2011)
http://dx.doi.org/10.1364/AO.50.001065


View Full Text Article

Enhanced HTML    Acrobat PDF (1530 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In regions of deep tropical convection, ice particles often undergo aggregation and form complex chains. To investigate the effect of the representation of aggregates on electromagnetic scattering calculations, we developed an algorithm to efficiently specify the geometries of aggregates and to compute some of their geometric parameters, such as the projected area. Based on in situ observations, ice aggregates are defined as clusters of hexagonal plates with a chainlike overall shape, which may have smooth or roughened surfaces. An aggregate representation is developed with 10 ensemble members, each consisting of between 4–12 hexagonal plates. The scattering properties of an individual aggregate ice particle are computed using either the discrete dipole approximation or an improved geometric optics method, depending upon the size parameters. Subsequently, the aggregate properties are averaged over all geometries. The scattering properties of the aggregate representation closely agree with those computed from 1000 different aggregate geometries. As a result, the aggregate representation provides an accurate and computationally efficient way to represent all aggregates occurring within ice clouds. Furthermore, the aggregate representation can be used to study the influence of these complex ice particles on the satellite-based remote sensing of ice clouds. The computed cloud reflectances for aggregates are different from those associated with randomly oriented individual hexagonal plates. When aggregates are neglected, simulated cloud reflectances are generally lower at visible and shortwave-infrared wavelengths, resulting in smaller effective particle sizes but larger optical thicknesses.

© 2011 Optical Society of America

OCIS Codes
(010.1310) Atmospheric and oceanic optics : Atmospheric scattering
(010.1615) Atmospheric and oceanic optics : Clouds
(010.0280) Atmospheric and oceanic optics : Remote sensing and sensors

ToC Category:
Atmospheric and Oceanic Optics

History
Original Manuscript: July 21, 2010
Revised Manuscript: December 21, 2010
Manuscript Accepted: January 10, 2010
Published: March 2, 2011

Citation
Yu Xie, Ping Yang, George W. Kattawar, Bryan A. Baum, and Yongxiang Hu, "Simulation of the optical properties of plate aggregates for application to the remote sensing of cirrus clouds," Appl. Opt. 50, 1065-1081 (2011)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-50-8-1065


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. B. A. Baum, A. J. Heymsfield, P. Yang, and S. T. Bedka, “Bulk scattering properties for the remote sensing of ice clouds. part I: microphysical data and models,” J. Appl. Meteorol. 44, 1885–1895 (2005). [CrossRef]
  2. B. A. Baum, P. Yang, A. J. Heymsfield, S. Platnick, M. D. King, Y. X. Hu, and S. T. Bedka, “Bulk scattering properties for the remote sensing of ice clouds. part II: narrowband models,” J. Appl. Meteorol. 44, 1896–1911 (2005). [CrossRef]
  3. A. J. Baran, “A review of the light scattering properties of cirrus,” J. Quant. Spectrosc. Radiat. Transfer 110, 1239–1260 (2009). [CrossRef]
  4. C. G. Schmitt and A. J. Heymsfield, “The dimensional characteristics of ice crystal aggregates from fractal geometry,” J. Atmos. Sci. 67, 1605–1616 (2010). [CrossRef]
  5. P. Yang, Z. B. Zhang, G. W. Kattawar, S. G. Warren, B. A. Baum, H. L. Huang, Y. X. Hu, D. Winker, and J. Iaquinta, “Effect of cavities on the optical properties of bullet rosettes: implications for active and passive remote sensing of ice cloud properties,” J. Appl. Meteorol. Clim. 47, 2311–2330 (2008). [CrossRef]
  6. W. Tape, Atmospheric Halos, Antarctic Research Series(American Geophysical Union, 1994), p. 143.
  7. A. Macke, J. Mueller, and E. Raschke, “Single scattering properties of atmospheric ice crystals,” J. Atmos. Sci. 53, 2813–2825 (1996). [CrossRef]
  8. P. Yang and K. N. Liou, “Single-scattering properties of complex ice crystals in terrestrial atmosphere,” Contrib. Atmos. Phys. 71, 223–248 (1998).
  9. V. Shcherbakov, J. F. Gayet, B. Baker, and P. Lawson, “Light scattering by single natural ice crystals,” J. Atmos. Sci. 63, 1513–1525 (2006). [CrossRef]
  10. P. Yang, G. Hong, G. W. Kattawar, P. Minnis, and Y. X. Hu, “Uncertainties associated with the surface texture of ice particles in satellite-based retrieval of cirrus clouds. part II: effect of particle surface roughness on retrieved cloud optical thickness and effective particle size,” IEEE Trans. Geosci. Remote Sensing 46, 1948–1957 (2008). [CrossRef]
  11. P. Yang, G. W. Kattawar, G. Hong, P. Minnis, and Y. X. Hu, “Uncertainties associated with the surface texture of ice particles in satellite-based retrieval of cirrus clouds. part I: single-scattering properties of ice crystals with surface roughness,” IEEE Trans. Geosci. Remote Sensing 46, 1940–1947(2008). [CrossRef]
  12. M. Kajikawa and A. J. Heymsfield, “Aggregation of ice crystals in cirrus,” J. Atmos. Sci. 46, 3108–3121 (1989). [CrossRef]
  13. J. L. Stith, J. E. Dye, A. Bansemer, A. J. Heymsfield, C. A. Grainger, W. A. Petersen, and R. Cifelli, “Microphysical observations of tropical clouds,” J. Appl. Meteorol. 41, 97–117 (2002). [CrossRef]
  14. J. L. Stith, J. A. Haggerty, A. Heymsfield, and C. A. Grainger, “Microphysical characteristics of tropical updrafts in clean conditions,” J. Appl. Meteorol. 43, 779–794 (2004). [CrossRef]
  15. A. J. Heymsfield, “Ice particle evolution in the anvil of a severe thunderstorm during CCOPE,” J. Atmos. Sci. 43, 2463–2478(1986). [CrossRef]
  16. M. W. Gallagher, P. J. Connolly, J. Whiteway, D. Figueras-Nieto, M. Flynn, T. W. Choularton, K. N. Bower, C. Cook, R. Busen, and J. Hacker, “An overview of the microphysical structure of cirrus clouds observed during EMERALD-1,” Q. J. R. Meteorol. Soc. 131, 1143–1169 (2005). [CrossRef]
  17. P. J. Connolly, C. P. R. Saunders, M. W. Gallagher, K. N. Bower, M. J. Flynn, T. W. Choularton, J. Whiteway, and R. P. Lawson, “Aircraft observations of the influence of electric fields on the aggregation of ice crystals,” Q. J. R. Meteorol. Soc. 131, 1695–1712 (2005). [CrossRef]
  18. G. M. McFarquhar and A. J. Heymsfield, “Microphysical characteristics of three anvils sampled during the Central Equatorial Experiment,” J. Atmos. Sci. 53, 2401–2423 (1996). [CrossRef]
  19. R. A. Houze and D. D. Churchill, “Mesoscale organization and cloud microphysics in a Bay of Bengal depression,” J. Atmos. Sci. 44, 1845–1867 (1987). [CrossRef]
  20. K. F. Evans, J. R. Wang, P. E. Racette, G. Heymsfield, and L. H. Li, “Ice cloud retrievals and analysis with the compact scanning submillimeter imaging radiometer and the cloud radar system during CRYSTAL FACE,” J. Appl. Meteorol. 44, 839–859 (2005). [CrossRef]
  21. J. Um and G. M. McFarquhar, “Single-scattering properties of aggregates of bullet rosettes in cirrus,” J. Appl. Meteorol. Clim. 46, 757–775 (2007). [CrossRef]
  22. J. Um and G. M. McFarquhar, “Single-scattering properties of aggregates of plates,” Q. J. R. Meteorol. Soc. 135, 291–304 (2009). [CrossRef]
  23. A. J. Baran, V. N. Shcherbakov, B. A. Baker, J. F. Gayet, and R. P. Lawson, “On the scattering phase-function of non-symmetric ice-crystals,” Q. J. R. Meteorol. Soc. 131, 2609–2616 (2005). [CrossRef]
  24. P. Dinh-Van and L. Phan-Cong, “Aggregation of small ice crystals in an electric field,” Atmos.-Ocean 16, 248–259 (1978). [CrossRef]
  25. H. R. Pruppacher, “The effects of electric fields on cloud physical processes,” J. Appl. Math. Phys. 14, 590–599(1963). [CrossRef]
  26. P. Hobbs, S. Chang, and J. Locatelli, “The dimension and aggregation of ice crystals in natural clouds,” J. Geophys. Res. 79, 2199–2206 (1974). [CrossRef]
  27. R. P. Lawson, B. A. Baker, C. G. Schmitt, and T. L. Jensen, “An overview of microphysical properties of Arctic clouds observed in May and July 1998 during FIRE ACE,” J. Geophys. Res. 106, 14989–15014 (2001). [CrossRef]
  28. A. J. Baran and L. C. Labonnote, “On the reflection and polarisation properties of ice cloud,” J. Quant. Spectrosc. Radiat. Transfer 100, 41–54 (2006). [CrossRef]
  29. B. T. Draine, “The discrete dipole approximation and its application to interstellar graphite grains,” Astrophys. J. 333, 848–872 (1988). [CrossRef]
  30. E. M. Purcell and C. R. Pennypacker, “Scattering and absorption of light by nonspherical dielectric grains,” Astrophys. J. 186, 705–714 (1973). [CrossRef]
  31. F. M. Kahnert, “Numerical methods in electromagnetic scattering theory,” J. Quant. Spectrosc. Radiat. Transfer 79, 775–824 (2003). [CrossRef]
  32. K. F. Evans and G. L. Stephens, “Microwave radiative transfer through clouds composed of realistically shaped ice crystals. part I: single scattering properties,” J. Atmos. Sci. 52, 2041–2057 (1995). [CrossRef]
  33. Q. Cai and K. N. Liou, “Polarized-light scattering by hexagonal ice crystals: theory,” Appl. Opt. 21, 3569–3580 (1982). [CrossRef] [PubMed]
  34. A. Macke, “Scattering of light by polyhedral ice crystals,” Appl. Opt. 32, 2780–2788 (1993). [CrossRef] [PubMed]
  35. H. R. Pruppacher and J. D. Klett, Microphysics of Clouds and Precipitation (Reidel, 1980).
  36. M. A. Yurkin, V. P. Maltsev, and A. G. Hoekstra, “The discrete dipole approximation for simulation of light scattering by particles much larger than the wavelength,” J. Quant. Spectrosc. Radiat. Transfer 106, 546–557 (2007). [CrossRef]
  37. M. A. Yurkin and A. G. Hoekstra, “User manual for the discrete dipole approximation code ADDA v. 0.79,” http://a-dda.googlecode.com/svn/tags/rel_0_79/doc/manual.pdf (2009).
  38. B. T. Draine and P. J. Flatau, “Discrete-dipole approximation for scattering calculations,” J. Opt. Soc. Am. A 11, 1491–1499(1994). [CrossRef]
  39. B. T. Draine and J. Goodman, “Beyond Clausius–Mossotti—wave propagation on a polarizable point lattice and the discrete dipole approximation,” Astrophys. J. 405, 685–697(1993). [CrossRef]
  40. P. Yang and K. N. Liou, “Geometric-optics-integral-equation method for light scattering by nonspherical ice crystals,” Appl. Opt. 35, 6568–6584 (1996). [CrossRef] [PubMed]
  41. O. V. Kalashnikova and I. N. Sokolik, “Modeling the radiative properties of nonspherical soli-derived mineral aerosols,” J. Quant. Spectrosc. Radiat. Transfer 87, 137–166 (2004). [CrossRef]
  42. L. Bi, P. Yang, G. W. Kattawar, and R. Kahn, “Single-scattering properties of triaxial ellipsoidal particles for a size parameter range from the Rayleigh to geometric-optics regimes,” Appl. Opt. 48, 114–126 (2009). [CrossRef]
  43. G. Hong, P. Yang, B. A. Baum, A. J. Heymsfield, F. Z. Weng, Q. H. Liu, G. Heygster, and S. A. Buehler, “Scattering database in the millimeter and submillimeter wave range of 100–1000 GHz for nonspherical ice particles,” J. Geophys. Res. 114, D06201, doi:06210.01029/02008JD010451 (2009). [CrossRef]
  44. T. Nousiainen, E. Zubko, J. V. Niemi, K. Kupiainen, M. Lehtinen, K. Muinonen, and G. Videen, “Single-scattering modeling of thin, birefringent mineral-dust flakes using the discrete-dipole approximation,” J. Geophys. Res. 114, D07207, doi:07210.01029/02008JD011564 (2009). [CrossRef]
  45. T. Nousiainen and K. Muinonen, “Surface-roughness effect on single-scattering properties of wavelength-scale particles,” J. Quant. Spectrosc. Radiat. Transfer 106, 389–397 (2007). [CrossRef]
  46. K.-N. Liou, An Introduction to Atmospheric Radiation, 2nd ed., International geophysics series Vol.  84 (Academic, 2002), pp. xiv, 583. [CrossRef]
  47. M. Wendisch, P. Pilewskie, J. Pommier, S. Howard, P. Yang, A. J. Heymsfield, C. G. Schmitt, D. Baumgardner, and B. Mayer, “Impact of cirrus crystal shape on solar spectral irradiance: a case study for subtropical cirrus,” J. Geophys. Res. 110, D03202, doi:03210.01029/02004JD005294 (2005). [CrossRef]
  48. P. Yang, H. L. Wei, H. L. Huang, B. A. Baum, Y. X. Hu, G. W. Kattawar, M. I. Mishchenko, and Q. Fu, “Scattering and absorption property database for nonspherical ice particles in the near- through far-infrared spectral region,” Appl. Opt. 44, 5512–5523 (2005). [CrossRef] [PubMed]
  49. Z. B. Zhang, P. Yang, G. W. Kattawar, S. C. Tsay, B. A. Baum, Y. X. Hu, A. J. Heymsfield, and J. Reichardt, “Geometrical-optics solution to light scattering by droxtal ice crystals,” Appl. Opt. 43, 2490–2499 (2004). [CrossRef] [PubMed]
  50. C. G. Schmitt, J. Iaquinta, and A. J. Heymsfield, “The asymmetry parameter of cirrus clouds composed of hollow bullet rosette-shaped ice crystals from ray-tracing calculations,” J. Appl. Meteorol. Clim. 45, 973–981 (2006). [CrossRef]
  51. H. M. Nussenzveig and W. J. Wiscombe, “Efficiency factors in Mie scattering,” Phys. Rev. Lett. 45, 1490–1494 (1980). [CrossRef]
  52. H. M. Nussenzveig and W. J. Wiscombe, “Complex angular momentum approximation to hard-core scattering,” Phys. Rev. A. 43, 2093–2112 (1991). [CrossRef] [PubMed]
  53. D. L. Mitchell, W. P. Arnott, C. Schmitt, A. J. Baran, S. Havemann, and Q. Fu, “Photon tunneling contributions to extinction for laboratory grown hexagonal columns,” J. Quant. Spectrosc. Radiat. Transfer 70, 761–776(2001). [CrossRef]
  54. C. Cox and W. Munk, “Measurement of the roughness of the sea surface from photographs of the Sun’s glitter,” J. Opt. Soc. Am. 44, 838–850 (1954). [CrossRef]
  55. D. Freedman, R. Pisani, and R. Purves, Statistics, 4th ed.(W. W. North, 2007).
  56. A. L. Kosarev and I. P. Mazin, “An empirical model of the physical structure of upper-layer clouds,” Atmos. Res. 26, 213–228 (1991). [CrossRef]
  57. D. L. Mitchell, “Evolution of snow-size spectra in cyclonic storms. part II: deviations from the exponential form,” J. Atmos. Sci. 48, 1885–1899 (1991). [CrossRef]
  58. A. J. Heymsfield, A. Bansemer, P. R. Field, S. L. Durden, J. L. Stith, J. E. Dye, W. Hall, and C. A. Grainger, “Observations and parameterizations of particle size distributions in deep tropical cirrus and stratiform precipitating clouds: results from in situ observations in TRMM field campaigns,” J. Atmos. Sci. 59, 3457–3491 (2002). [CrossRef]
  59. K. Stamnes, S. C. Tsay, W. Wiscombe, and K. Jayaweera, “Numerically stable algorithm for discrete-ordinate-method radiative transfer in multiple scattering and emitting layered media,” Appl. Opt. 27, 2502–2509 (1988). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited