OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 50, Iss. 8 — Mar. 10, 2011
  • pp: 1170–1185

Infrared hyperspectral imaging polarimeter using birefringent prisms

Julia Craven-Jones, Michael W. Kudenov, Maryn G. Stapelbroek, and Eustace L. Dereniak  »View Author Affiliations

Applied Optics, Vol. 50, Issue 8, pp. 1170-1185 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1781 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A compact short-wavelength and middle-wavelength infrared hyperspectral imaging polarimeter (IHIP) is introduced. The sensor includes a pair of sapphire Wollaston prisms and several high-order retarders to form an imaging Fourier transform spectropolarimeter. The Wollaston prisms serve as a birefringent interferometer with reduced sensitivity to vibration versus an unequal path interferometer, such as a Michelson. Polarimetric data are acquired through the use of channeled spectropolarimetry to modulate the spectrum with the Stokes parameter information. The collected interferogram is Fourier filtered and reconstructed to recover the spatially and spectrally varying Stokes vector data across the image. The IHIP operates over a ± 5 ° field of view and implements a dual-scan false signature reduction technique to suppress polarimetric aliasing artifacts. In this paper, the optical layout and operation of the IHIP sensor are presented in addition to the radiometric, spectral, and polarimetric calibration techniques used with the system. Spectral and spectropolarimetric results from the laboratory and outdoor tests with the instrument are also presented.

© 2011 Optical Society of America

OCIS Codes
(120.2130) Instrumentation, measurement, and metrology : Ellipsometry and polarimetry
(300.6340) Spectroscopy : Spectroscopy, infrared
(110.4234) Imaging systems : Multispectral and hyperspectral imaging

ToC Category:
Imaging Systems

Original Manuscript: November 1, 2010
Revised Manuscript: January 13, 2011
Manuscript Accepted: January 20, 2011
Published: March 9, 2011

Virtual Issues
Vol. 6, Iss. 4 Virtual Journal for Biomedical Optics

Julia Craven-Jones, Michael W. Kudenov, Maryn G. Stapelbroek, and Eustace L. Dereniak, "Infrared hyperspectral imaging polarimeter using birefringent prisms," Appl. Opt. 50, 1170-1185 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. W. L. Wolfe, Introduction to Imaging Spectrometers (SPIE, 1997). [CrossRef]
  2. K. H. Nordsieck, “A simple polarimetric system for the Lick Observatory Image-Tube Scanner,” Publ. Astron. Soc. Pac. 86, 324–329 (1974). [CrossRef]
  3. K. Oka and T. Kato, “Spectroscopic polarimetry with a channeled spectrum,” Opt. Lett. 24, 1475–1477 (1999). [CrossRef]
  4. S. H. Jones, F. J. Iannarilli, and P. L. Kebabian, “Realization of quantitative-grade fieldable snapshot imaging spectropolarimeter,” Opt. Express 12, 6559–6573 (2004). [CrossRef] [PubMed]
  5. T. Kusunoki and K. Oka, “Fourier spectroscopic measurement of polarization using birefringent retarders,” in The 61st Autumn Meeting of the Japan Society of Applied Physics (2000), p. 871.
  6. M. W. Kudenov, N. A. Hagen, E. L. Dereniak, and G. R. Gerhart, “Fourier transform channeled spectropolarimetry in the MWIR,” Opt. Express 15, 12792–12805 (2007). [CrossRef] [PubMed]
  7. J. Craven, M. W. Kudenov, and E. L. Dereniak, “False signature reduction in infrared channeled spectropolarimetry,” Proc. SPIE 7419, 741909 (2009). [CrossRef]
  8. J. Craven and M. W. Kudenov, “False signature reduction in channeled spectropolarimetry,” Opt. Eng. 49, 053602 (2010). [CrossRef]
  9. J. S. Tyo, D. L. Goldstein, D. B. Chenault, and J. A. Shaw, “Review of passive imaging polarimetry for remote sensing applications,” Appl. Opt. 45, 5453–5469 (2006). [CrossRef] [PubMed]
  10. A. R. Harvey and D. W. Fletcher-Holmes, “Birefringent Fourier-transform imaging spectrometer,” Opt. Express 12, 5368–5374 (2004). [CrossRef] [PubMed]
  11. V. Saptari, Fourier Transform Spectroscopy Instrumentation Engineering (SPIE, 2004).
  12. L. Mertz, “Auxiliary computation for Fourier spectrometry,” Infrared Phys. 7, 17–23 (1967). [CrossRef]
  13. F. Snik, T. Karalidi, and C. U. Keller, “Spectral modulation for full linear polarimetry,” Appl. Opt. 48, 1337–1346 (2009). [CrossRef] [PubMed]
  14. R. Venkateswarlu, M. H. Er, Y. H. Gan, and Y. C. Fong. “Nonuniformity compensation for IR focal plane array sensors,” Proc. SPIE 3061, 915–926 (1997). [CrossRef]
  15. The Infrared Handbook, W.L.Wolfe and G.J.Zissis, eds. (Infrared Information Analysis (IRIA) Center, Environmental Research Institute of Michigan, 1993).
  16. M. Francon and S. Mallick, Polarization Interferomers: Applications in Microscopy and Macroscopy (Wiley Interscience, 1972).
  17. A. Taniguchi, K. Oka, H. Okabe, and M. Hayakawa, “Stabilization of a channeled spectropolarimeter by self-calibration,” Opt. Lett. 31, 3279–3281 (2006). [CrossRef] [PubMed]
  18. L. W. Schumann and T. S. Lomhein, “Infrared hyperspectral imaging Fourier transform and dispersive spectrometers: comparison of signal-to-noise based performance,” Proc. SPIE 4480, 1–14 (2002). [CrossRef]
  19. E. Voigtman and J. D. Winefordner, “The multiplex disadvantage and excess low-frequency noise,” Appl. Spectrosc. 41, 1182–1184 (1987). [CrossRef]
  20. D. Goldstein, Polarized Light (Marcel Dekker, 2003). [CrossRef]
  21. M. W. Kudenov, J. L. Pezzaniti, and G. R. Gerhart, “Microbolometer-infrared imaging Stokes polarimeter,” Opt. Eng. 48, 063201 (2009). [CrossRef]
  22. J. S. Tyo, E. N. Pugh, and N. Engheta, “Colorimetric representations for use with polarization-difference imaging of objects in scattering media,” J. Opt. Soc. Am. A 15, 367–374(1998). [CrossRef]
  23. O. Sandus, “A review of emission polarization,” Appl. Opt. 4, 1634–1642 (1965). [CrossRef]
  24. C. Koike, H. Hasegawa, N. Asada, and T. Komatuzaki, “Optical constants of fine particles for the infrared region,” Mon. Not. R. Astr. Soc. 239, 127–137 (1989).
  25. O. Jacquot and P. Herve, “Determination of the temperature field in exhaust gases by infrared spectroscopy,” Proc. SPIE 3493, 71–78 (1998). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited