OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 50, Iss. 9 — Mar. 20, 2011
  • pp: 1210–1219

Optimization of displacement-measuring quadrature interferometers considering the real properties of optical components

Tomaž Požar, Peter Gregorčič, and Janez Možina  »View Author Affiliations


Applied Optics, Vol. 50, Issue 9, pp. 1210-1219 (2011)
http://dx.doi.org/10.1364/AO.50.001210


View Full Text Article

Enhanced HTML    Acrobat PDF (1193 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present the influence of alignment and the real properties of optical components on the performance of a two-detector homodyne displacement-measuring quadrature laser interferometer. An experimental method, based on the optimization of visibility and sensitivity, was established and theoretically described to assess the performance and stability of the interferometer. We show that the optimal performance of such interferometers is achieved with the iterative alignment procedure described.

© 2011 Optical Society of America

OCIS Codes
(120.0120) Instrumentation, measurement, and metrology : Instrumentation, measurement, and metrology
(120.3180) Instrumentation, measurement, and metrology : Interferometry
(120.3930) Instrumentation, measurement, and metrology : Metrological instrumentation
(120.4570) Instrumentation, measurement, and metrology : Optical design of instruments
(230.1360) Optical devices : Beam splitters
(230.5440) Optical devices : Polarization-selective devices

ToC Category:
Instrumentation, Measurement, and Metrology

History
Original Manuscript: November 5, 2010
Revised Manuscript: January 19, 2011
Manuscript Accepted: January 20, 2011
Published: March 10, 2011

Citation
Tomaž Požar, Peter Gregorčič, and Janez Možina, "Optimization of displacement-measuring quadrature interferometers considering the real properties of optical components," Appl. Opt. 50, 1210-1219 (2011)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-50-9-1210


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. Y. Lee, D. M. Kim, D. G. Gweon, and J. Park, “A calibrated atomic force microscope using an orthogonal scanner and a calibrated laser interferometer,” Appl. Surf. Sci. 253, 3945–3951 (2007). [CrossRef]
  2. I. Misumi, S. Gonda, O. Sato, K. Sugawara, K. Yoshizaki, T. Kurosawa, and T. Takatsuji, “Nanometric lateral scale development using an atomic force microscope with directly traceable laser interferometers,” Meas. Sci. Technol. 17, 2041–2047 (2006). [CrossRef]
  3. T. Hausotte, B. Percle, and G. Jäger, “Advanced three-dimensional scan methods in the nanopositioning and nanomeasuring machine,” Meas. Sci. Technol. 20, 084004 (2009). [CrossRef]
  4. P. Gregorčič, T. Požar, and J. Možina, “Quadrature phase-shift error analysis using a homodyne laser interferometer,” Opt. Express 17, 16322–16331 (2009). [CrossRef] [PubMed]
  5. T. Požar and J. Možina, “Homodyne quadrature laser interferometer applied for the studies of optodynamic wave propagation in a rod,” Strojniški Vestnik—J. Mech. Eng. 55, 575–580(2009).
  6. F. Petrů and O. Číp, “Problems regarding linearity of data of a laser interferometer with a single-frequency laser,” Precis. Eng. 23, 39–50 (1999). [CrossRef]
  7. T. Keem, S. Gonda, I. Misumi, Q. X. Huang, and T. Kurosawa, “Simple, real-time method for removing the cyclic error of a homodyne interferometer with a quadrature detector system,” Appl. Opt. 44, 3492–3498 (2005). [CrossRef] [PubMed]
  8. J. J. Monzon and L. L. Sanchezsoto, “Absorbing beam splitter in a Michelson Interferometer,” Appl. Opt. 34, 7834–7839(1995). [CrossRef] [PubMed]
  9. C. M. Wu and C. S. Su, “Nonlinearity in measurements of length by optical interferometry,” Meas. Sci. Technol. 7, 62–68(1996). [CrossRef]
  10. J. Ahn, J. A. Kim, C. S. Kang, J. W. Kim, and S. Kim, “A passive method to compensate nonlinearity in a homodyne interferometer,” Opt. Express 17, 23299–23308 (2009). [CrossRef]
  11. P. Křen, “Linearisation of counting interferometers with 0.1 nm precision,” Int. J. Nanotechnology 4, 702–711 (2007).
  12. P. L. M. Heydemann, “Determination and correction of quadrature fringe measurement errors in interferometers,” Appl. Opt. 20, 3382–3384 (1981). [CrossRef] [PubMed]
  13. M. A. Zumberge, J. Berger, M. A. Dzieciuch, and R. L. Parker, “Resolving quadrature fringes in real time,” Appl. Opt. 43, 771–775 (2004). [CrossRef] [PubMed]
  14. M. Dobosz, T. Usuda, and T. Kurosawa, “The methods for the calibration of vibration pick-ups by laser interferometry: part I. Theoretical analysis,” Meas. Sci. Technol. 9, 232–239 (1998). [CrossRef]
  15. P. Gregorčič, T. Požar, and J. Možina, “Phase-shift error in quadrature-detection-based interferometers,” Proc. SPIE 7726, 77260X (2010). [CrossRef]
  16. Edmund Optics, Optics and Optical Instruments Catalog (2010), p. 141.
  17. Eksma Optics, Laser Components 2009/2010 (2009), vol.  18, p. 1.39.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited