OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 50, Iss. 9 — Mar. 20, 2011
  • pp: 1227–1233

Quantitative analysis of toxic metals lead and cadmium in water jet by laser-induced breakdown spectroscopy

M. Sadegh Cheri and S. H. Tavassoli  »View Author Affiliations


Applied Optics, Vol. 50, Issue 9, pp. 1227-1233 (2011)
http://dx.doi.org/10.1364/AO.50.001227


View Full Text Article

Enhanced HTML    Acrobat PDF (534 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Laser-induced breakdown spectroscopy (LIBS) has been applied to the analysis of toxic metals Pb and Cd in Pb ( NO 3 ) 2 and Cd ( NO 3 ) 2 . 4 H 2 O aqueous solutions, respectively. The plasma is generated by focusing a nanosecond Nd:YAG ( λ = 1064 nm ) laser on the surface of liquid in the homemade liquid jet configuration. With an assumption of local thermodynamic equilibrium (LTE), calibration curves of Pb and Cd were obtained at different delay times between 1 to 5 μ s . The temporal behavior of limit of detections (LOD) was investigated and it is shown that the minimum LODs for Pb and Cd are 4 and 68 parts in 10 6 (ppm), respectively. In order to demonstrate the correctness of the LTE assumption, plasma parameters including plasma temperature and electron density are evaluated, and it is shown that the LTE condition is satisfied at all delay times.

© 2011 Optical Society of America

OCIS Codes
(140.3440) Lasers and laser optics : Laser-induced breakdown
(300.6365) Spectroscopy : Spectroscopy, laser induced breakdown

ToC Category:
Spectroscopy

History
Original Manuscript: July 21, 2010
Revised Manuscript: January 11, 2011
Manuscript Accepted: January 14, 2011
Published: March 14, 2011

Citation
M. Sadegh Cheri and S. H. Tavassoli, "Quantitative analysis of toxic metals lead and cadmium in water jet by laser-induced breakdown spectroscopy," Appl. Opt. 50, 1227-1233 (2011)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-50-9-1227


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Kampa and E. Castanas, “Human health effects of air pollution,” Environ. Pollut. 151, 362–367 (2008). [CrossRef]
  2. A. Turner, “Marine pollution from antifouling paint particles,” Mar. Pollut. Bull. 60, 159–171 (2010). [CrossRef] [PubMed]
  3. H. Palacios, I. Iribarren, M. J. Olalla, and V. Cala, “Lead poisoning of horses in the vicinity of a battery recycling plant,” Sci. Total Environ. 290, 81–89 (2002). [CrossRef] [PubMed]
  4. N. Mirlean and A. Roisenberg, “The effect of emissions of fertilizer production on the environment contamination by cadmium and arsenic in southern Brazil,” Environ. Pollut. 143, 335–340 (2006). [CrossRef] [PubMed]
  5. H. Wake, “Oil refineries: a review of their ecological impacts on the aquatic environment,” Estuar. Coast. Shelf S. 62, 131–140 (2005). [CrossRef]
  6. S. Dudka, M. Piotrowska, A. Chlopeckaand, and T. Witek, “Trace metal contamination of soils and crop plants by the mining and smelting industry in Upper Silesia, South Poland,” J. Geochem. Explor. 52, 237–250 (1995). [CrossRef]
  7. S. Tong, Y. E. R. von Schirnding, and T. Prapamontol, “Environmental lead exposure: a public health problem of global dimensions,” Bull. W.H.O. 78, 1068–1077 (2000). [PubMed]
  8. H. Horiguchi, H. Teranishi, K. Niiya, K. Aoshima, T. Katoch, N. Sakuragawa, and M. Kasuya, “Hypoproduction of erythropoietin contributes to anemia in chronic cadmium intoxication: clinical study on Itai-itai disease in Japan,” Arch. Toxicol. 68, 632–636 (1994). [PubMed]
  9. M. T. Antonio and M. L. Leret, “Study of the neurochemical alterations produced in discrete brain areas by perinatal low-level lead exposure,” Life Sci. 67, 635–642 (2000). [CrossRef]
  10. T. I. Lidsky and J. S. Schneider, “Lead neurotoxicity in children: basic mechanisms and clinical correlates,” Brain 126, 5–19 (2003). [CrossRef]
  11. G. D. Nuyts, M. M. Elseviers, and M. E. De Broe, “Health impact of renal disease due to nephrotoxicity,” Toxicol. Lett. 46, 31–44 (1989). [CrossRef] [PubMed]
  12. W. Kaim and B. Schwederski, Bioinorganic Chemistry: Inorganic Elements in the Chemistry of Life (Wiley-Interscience, 1991).
  13. I. Al-Saleh, S. Coskun, A. Mashhour, N. Shinwari, I. El-Doush, G. Billedo, K. Jaroudi, A. Al-Shahrani, M. Al-Kabra, and G. El Din Mohamed, “Exposure to heavy metals (lead, cadmium and mercury) and its effect on the outcome of in-vitro fertilization treatment,” Int. J. Hyg. Environ. Health 211, 560–579 (2008). [CrossRef]
  14. D. Il’yasova and G. G. Schwartz, “Cadmium and renal cancer,” Toxicol. Appl. Pharmacol. 207, 179–186 (2005). [CrossRef] [PubMed]
  15. R. M. Tripathi, R. Raghunath, S. Mahapatra, and S. Sadasivan, “Blood lead and its effect on Cd, Cu, Zn, Fe and hemoglobin levels of children,” Sci. Total Environ. 277, 161–168 (2001). [CrossRef] [PubMed]
  16. J. A. C. Broekaert, F. Leis, and K. Laqua, “The application of an argon/nitrogen inductively-coupled plasma to the analysis of organic solutions,” Talanta 28, 745–752 (1981). [CrossRef] [PubMed]
  17. L. P. Eksperiandova, Y. N. Makarovska, and A. B. Blank, “Determination of small quantities of heavy metals in water-soluble salts and natural water by X-ray fluorescence,” Anal. Chim. Acta 371, 105–108 (1998). [CrossRef]
  18. A. W. Morris, “The simultaneous determination of vanadium, chromium, manganese, iron, cobalt, nickel, copper and zinc in sea water by x-ray fluorescence spectrometry,” Anal. Chim. Acta 42, 397–406 (1968). [CrossRef]
  19. J. Chen and K. C. Teo, “Determination of cobalt and nickel in water samples by flame atomic absorption spectrometry after cloud point extraction,” Anal. Chim. Acta 434, 325–330 (2001). [CrossRef]
  20. M. C. Yebra-Biurrun, A. Bermejo-Barrera, M. P. Bermejo-Barrera, and M. C. Barciela-Alonso, “Determination of trace metals in natural waters by flame atomic absorption spectrometry following on-line ion-exchange preconcentration,” Anal. Chim. Acta 303, 341–345 (1995). [CrossRef]
  21. J. Y. Cabon, “Determination of Cd and Pb in seawater by graphite furnace atomic absorption spectrometry with the use of hydrofluoric acid as a chemical modifier,” Spectrochim. Acta Part B 57, 513–524 (2002). [CrossRef]
  22. E. Guinat, “Spectrometric oil analysis: atomic emission spectrometric analysis of wear metals in lube oils by RDE method,” Tribol. Int. 18, 246 (1985). [CrossRef]
  23. D. A. Cremers and L. J. Radziemski, Handbook of Laser Induced Breakdown Spectroscopy (Wiley, 2006). [CrossRef]
  24. V. Sturm and R. Noll, “Laser-induced breakdown spectroscopy of gas mixtures of air, CO2, N2, and C3H8 for simultaneous C, H, O, and N measurement,” Appl. Opt. 42, 6221–6225 (2003). [CrossRef] [PubMed]
  25. B. Charfi and M. A. Harith, “Panoramic laser-induced breakdown spectrometry of water,” Spectrochim. Acta Part B 57, 1141–1153 (2002). [CrossRef]
  26. X. K. Shen and Y. F. Lu, “Detection of uranium in solids by using laser-induced breakdown spectroscopy combined with laser-induced fluorescence,” Appl. Opt. 47, 1810–1815 (2008). [CrossRef] [PubMed]
  27. E. G. Snyder, C. A. Munson, J. L. Gottfried, F. C. De Lucia, B. Gullett, and A. Miziolek, “Laser-induced breakdown spectroscopy for the classification of unknown powders,” Appl. Opt. 47, G80–G87 (2008). [CrossRef]
  28. K. Loebe, A. Uhl, and H. Lucht, “Microanalysis of tool steel and glass with laser-induced breakdown spectroscopy,” Appl. Opt. 42, 6166–6173 (2003). [CrossRef] [PubMed]
  29. D. A. Cremers, L. J. Radziemski, and T. T. Loree, “Spectrochemical analysis of liquids using the laser spark,” Appl. Spectrosc. 38, 721–729 (1984). [CrossRef]
  30. G. Arca, A. Ciucci, V. Palleschi, S. Rastelli, and E. Tognoni, “Trace element analysis in water by laser-induced breakdown spectroscopy technique,” Appl. Spectrosc. 51, 1102–1105(1997). [CrossRef]
  31. L. St.-Onge, E. Kwong, M. Sabsabi, and E. B. Vadas, “Rapid analysis of liquid formulations containing sodium chloride using laser-induced breakdown spectroscopy,” J. Pharm. Biomed. Anal. 36, 277–284 (2004). [CrossRef] [PubMed]
  32. R. L. Vander Wal, T. M. Ticich, J. R. West, and P. A. Householder, “Trace metal detection by laser-induced breakdown spectroscopy,” Appl. Spectrosc. 53, 1226–1236 (1999). [CrossRef]
  33. N. E. Schmidt and S. R. Goode, “Analysis of aqueous solutions by laser-induced breakdown spectroscopy of ion exchange membranes,” Appl. Spectrosc. 56, 370–374 (2002). [CrossRef]
  34. C. R. Dockey, J. E. Pender, and S. R. Goode, “Speciation of chromium via laser-induced breakdown spectroscopy of ion exchange polymer membranes,” Appl. Spectrosc. 59, 252–257(2005). [CrossRef]
  35. J. O. Cáceres, J. Tornero López, H. H. Telle, and A. González Ureña, “Quantitative analysis of trace metal ions in ice using laser-induced breakdown spectroscopy,” Spectrochim. Acta Part B 56, 831–838 (2001). [CrossRef]
  36. D. M. Díaz Pace, C. A. D’Angelo, D. Bertuccelli, and G. Bertuccelli, “Analysis of heavy metals in liquids using laser induced breakdown spectroscopy by liquid-to-solid matrix conversion,” Spectrochim. Acta Part B 61, 929–933 (2006). [CrossRef]
  37. J. P. Singh and S. N. Thakur, Laser-Induced Breakdown Spectroscopy (Elsevier, 2007).
  38. R. L. Vander Wal, T. M. Ticich, J. R. West, and P. A. Householder, “Trace metal detection by laser-induced breakdown spectroscopy,” Appl. Spectrosc. 53, 1226–1236 (1999). [CrossRef]
  39. C. R. Dockey, J. E. Pender, and S. R. Goode, “Speciation of chromium via laser-induced breakdown spectroscopy of ion exchange polymer membranes,” Appl. Spectrosc. 59, 252–257(2005). [CrossRef]
  40. P. Yaroshchyk, R. J. S. Morrison, D. Body, and B. L. Chadwick, “Quantitative determination of wear metals in engine oil using LIBS: the use of paper substrates and a comparison between single- and double-pulse LIBS,” Spectrochim. Acta Part B 60, 1482–1485 (2005). [CrossRef]
  41. Zh. Chen, H. Li, M. Liu, and R. Li, “Fast and sensitive trace metal analysis in aqueous solutions by laser-induced breakdown spectroscopy using wood slice substrates,” Spectrochim. Acta Part B 63, 64–68 (2008). [CrossRef]
  42. J. O. Cáceres, J. Tornero López, H. H. Telle, and A. González Ureña, “Quantitative analysis of trace metal ions in ice using laser-induced breakdown spectroscopy,” Spectrochim. Acta Part B 56, 831–838 (2001). [CrossRef]
  43. D. M. Díaz Pace, C. A. D’Angelo, D. Bertuccelli, and G. Bertuccelli, “Analysis of heavy metals in liquids using laser induced breakdown spectroscopy by liquid-to-solid matrix conversion,” Spectrochim. Acta Part B 61, 929–933 (2006). [CrossRef]
  44. National Institute of Standards and Technology (NIST), http://physics.nist.gov/PhysRefData/ASD/lines_form.html.
  45. A. W. Miziolek, V. Palleschi, and I. Schecter, Laser Induced Breakdown Spectroscopy (Cambridge University, 2006). [CrossRef]
  46. W. R. Bride, Chemical Spectroscopy (Wiley, 1952).
  47. W. F. Ho, C. W. Ng, and N. H. Cheung, “Spectrochemical analysis of liquids using laser-induced plasma emissions: effect of laser wavelength,” Appl. Spectrosc. 51, 87–91 (1997). [CrossRef]
  48. O. Samek, D. C. S. Beddows, J. Kaiser, S. V. Kukhlevsky, M. Liska, H. H. Telle, and J. Young, “Application of laser-induced breakdown spectroscopy to in-situ analysis of liquid samples,” Opt. Eng. 39, 2248–2262 (2000). [CrossRef]
  49. L. J. Radziemski, “Review of selected analytical applications of laser plasmas and laser ablation,” Microchem. J. 50, 218–234 (1994). [CrossRef]
  50. U. Panne, C. Haisch, M. Clara, and R. Niessner, “Analysis of glass melts during the verification process of fly and bottom ashes by laser-induced plasma spectroscopy. Part I: normalization and plasma diagnostics,” Spectrochim. Acta Part B 53, 1957–1968 (1998). [CrossRef]
  51. Y. Lee, K. Song, and J. Sneddon In: Laser in Analytical Atomic Spectroscopy, J.Sneddon, T.L.Thiem, and Y.Lee (VCH,1997).
  52. D. A. Cremers and L. J. Radziemski, “Detection of chlorine and fluorine in air by laser induced breakdown spectrometry,” Anal. Chem. 55, 1252–1256 (1983). [CrossRef]
  53. M. Sabsabi and P. Cielo, “Quantitative analysis of aluminum alloys by laser induced breakdown spectroscopy and plasma characterization,” Appl. Spectrosc. 49, 499–507(1995). [CrossRef]
  54. Y. Feng, J. Yang, J. Fan, G. Yao, X. Ji, X. Zhang, X. Zheng, and Zh. Cui, “Investigation of laser-induced breakdown spectroscopy of a liquid jet,” Appl. Opt. 49, C70–C74(2010). [CrossRef]
  55. P. Yaroshchyk, R. J. S. Morrison, D. Body, and B. L. Chadwick, “Quantitative determination of wear metals in engine oil using LIBS: the use of paper substrates and a comparison between single- and double-pulse LIBS,” Spectrochim. Acta Part B 60, 1482–1485 (2005). [CrossRef]
  56. H. R. Griem, Plasma Spectroscopy (McGraw-Hill, 1964).
  57. A. P. Thorne, Spectrophysics (Chapman and Hall, 1988). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited