OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 50, Iss. 9 — Mar. 20, 2011
  • pp: 1240–1259

Retrieving composition and sizes of oceanic particle subpopulations from the volume scattering function

Xiaodong Zhang, Michael Twardowski, and Marlon Lewis  »View Author Affiliations

Applied Optics, Vol. 50, Issue 9, pp. 1240-1259 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1545 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



For a particle population with known size, composition, structure, and shape distributions, its volume scattering function (VSF) can be estimated from first principles through a governing relationship, the Fredholm linear integral equation of the first kind. Inverting the Fredholm equation to derive the composition and size distribution of particles from measured VSFs remains challenging because 1) the solution depends on the kernel function, and 2) the kernel function needs to be constructed to avoid singularity. In this study, a thorough review of the earlier and current inversion techniques is provided. An inversion method based on nonnegative least squares is presented and evaluated using the VSFs measured by a prototype volume scattering meter at the LEO-15 site off the New Jersey coast. The kernel function was built by a compilation of individual subpopulations, each of which follows a lognormal size distribution and whose characteristic size and refractive index altogether cover the entire ranges of natural variability of potential marine particles of the region. Sensitivity analyses were conducted to ensure the kernel function being constructed is neither singular nor pathological. A total of 126 potential subpopulations were identified, among which 11 are common in more than half of the inversions and only five consistently present ( > 90 % of measurements). These five subpopulations can be interpreted as small colloidal type particles of sizes around 0.02 μm , submicrometer detritus-type particles ( n r = 1.02 , r mode = 0.2 μm ), two micrometer-sized subpopulations with one relatively soft ( n r = 1.04 and r mode = 1.6 μm ) and the other relatively refringent ( n r = 1.10 and r mode = 3.2 μm ), and bubbles of relatively large sizes ( n r = 0.75 and r mode = 10 μm ). Reconstructed PSDs feature a bimodal shape, with the smaller peak dominated by the colloidal subpopulations and the larger particles closely approximated by a power-law function. The Junge-type slope averages 4.0 ± 0.2 , in close agreement with the well-known mean value of 4.0 over the global ocean. The distribution of the refractive index suggested a dominance of particles of higher water content, also in agreement with earlier results based on the backscattering ratio and attenuation coefficients at the same area. Surprisingly, the colloidal-type subpopulations, which have often been operationally classified as “dissolved” and neglected for their scattering, exhibit significant backscattering with contributions of up to 40% over the entire backward angles.

© 2011 Optical Society of America

OCIS Codes
(010.0010) Atmospheric and oceanic optics : Atmospheric and oceanic optics
(010.4450) Atmospheric and oceanic optics : Oceanic optics
(290.5850) Scattering : Scattering, particles
(010.4458) Atmospheric and oceanic optics : Oceanic scattering
(010.0280) Atmospheric and oceanic optics : Remote sensing and sensors

ToC Category:
Atmospheric and Oceanic Optics

Original Manuscript: August 31, 2010
Revised Manuscript: January 13, 2011
Manuscript Accepted: January 17, 2011
Published: March 15, 2011

Virtual Issues
Vol. 6, Iss. 4 Virtual Journal for Biomedical Optics

Xiaodong Zhang, Michael Twardowski, and Marlon Lewis, "Retrieving composition and sizes of oceanic particle subpopulations from the volume scattering function," Appl. Opt. 50, 1240-1259 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. Twomey, Introduction to the Mathematics of Inversion in Remote Sensing and Indirect Measurements, Developments in Geomathematics (Elsevier, 1977).
  2. M. R. Jones, B. P. Curry, M. Q. Brewster, and K. H. Leong, “Inversion of light-scattering measurements for particle size and optical constants: theoretical study,” Appl. Opt. 33, 4025–4034 (1994). [CrossRef]
  3. A. Morel, “The scattering of light by seawater: experimental results and theoretical approach,” in Optics of the Sea, Interface and In-Water Transmission and Imaging (NATO Advisory Group for Aerospace Research and Development, 1973).
  4. M. E. Lee and M. R. Lewis, “A new method for the measurement of the optical volume scattering function in the upper ocean,” J. Atmos. Ocean. Technol. 20, 563–571 (2003). [CrossRef]
  5. J. M. Sullivan and M. S. Twardowski, “Angular shape of the oceanic particulate volume scattering function in the backward direction,” Appl. Opt. 48, 6811–6819 (2009). [CrossRef]
  6. M. S. Twardowski, C. Moore, J. Sullivan, M. Slivkoff, S. Freeman, and J. R. V. Zaneveld, are preparing a manuscript to be called “Volume scattering functions for selected ocean waters: revisited.”
  7. Y. C. Agrawal and H. C. Pottsmith, “Instruments for particle size and settling velocity observations in sediment transport,” Mar. Geol. 168, 89–114 (2000). [CrossRef]
  8. E. Boss, W. S. Pegau, M. Lee, M. Twardowski, E. Shybanov, and G. Korotaev, “Particulate backscattering ratio at LEO 15 and its use to study particle composition and distribution,” J. Geophys. Res. 109, C01014 (2004). [CrossRef]
  9. X. Zhang, M. R. Lewis, M. Lee, B. D. Johnson, and G. Korotaev, “Volume scattering function of natural bubble populations,” Limnol. Oceanogr. 47, 1273–1282 (2002). [CrossRef]
  10. J.-F. Berthon, E. Shybanov, M. E. G. Lee, and G. Zibordi, “Measurements and modeling of the volume scattering function in the coastal northern Adriatic Sea,” Appl. Opt. 46, 5189–5203(2007). [CrossRef]
  11. M. Chami, E. B. Shybanov, T. Y. Churilova, G. A. Khomenko, M. E. G. Lee, O. V. Martynov, G. A. Berseneva, and G. K. Korotaev, “Optical properties of the particles in the Crimea coastal waters (Black Sea),” J. Geophys. Res. 110, C11020 (2005). [CrossRef]
  12. M. S. Twardowski, E. Boss, J. B. Macdonald, W. S. Pegau, A. H. Barnard, and J. R. V. Zaneveld, “A model for estimating bulk refractive index from the optical backscattering ratio and the implications for understanding particle composition in case I and case II waters,” J. Geophys. Res. 106, 14129–14142(2001). [CrossRef]
  13. G. Kullenberg, “Scattering of light by Sargasso Sea water,” Deep-Sea Res. 15, 423–432 (1968).
  14. G. Kullenberg, “Observed and computed scattering functions,” in Optical Aspects of Oceanography, N.G.Jerlov and E.Steeman-Nielsen, eds. (Academic, 1974), pp. 25–49.
  15. H. R. Gordon and O. B. Brown, “A theoretical model of light scattering by Sargasso Sea particulates,” Limnol. Oceanogr. 17, 826–832 (1972). [CrossRef]
  16. O. B. Brown and H. R. Gordon, “Two component Mie scattering models of Sargasso Sea particles,” Appl. Opt. 12, 2461–2465 (1973). [CrossRef]
  17. J. R. V. Zaneveld and H. Pak, “Method for the determination of the index of refraction of particles suspended in the ocean,” J. Opt. Soc. Am. 63, 321–324 (1973). [CrossRef]
  18. F. T. Manheim, R. H. Meade, and G. C. Bond, “Suspended matter in surface waters of the Atlantic continental margin from Cape Cod to the Florida Keys,” Science 167, 371–376(1970). [CrossRef]
  19. G. F. Beardsley, H. J. Pak, and K. L. Carder, “Light scattering and suspended particles in the Eastern Equatorial Pacific ocean,” J. Geophys. Res. 75, 2837–2845 (1970). [CrossRef]
  20. D. Stramski and D. A. Kiefer, “Light scattering by microorganisms in the open ocean,” Prog. Oceanogr. 28, 343–383 (1991). [CrossRef]
  21. G. Dall’Olmo, T. K. Westberry, M. J. Behrenfeld, E. Boss, and W. H. Slade, “Significant contribution of large particles to optical backscattering in the open ocean,” Biogeosciences 6, 947–967 (2009). [CrossRef]
  22. O. B. Brown and H. R. Gordon, “Size-refractive index distribution of clear coastal water particulates from light scattering,” Appl. Opt. 13, 2874–2881 (1974). [CrossRef]
  23. M. Jonasz and H. Prandke, “Comparison of measured and computed light scattering in the Baltic,” Tellus 38B, 144–157 (1986). [CrossRef]
  24. J. S. Schoonmaker, R. R. Hammond, A. L. Heath, and J. S. Cleveland, “A numerical model for prediction of sublittoral optical visibility,” Proc. SPIE 2258, 685–702 (1994). [CrossRef]
  25. T. J. Petzold, “Volume scattering function for selected ocean waters,” SIO Ref. 72-78, Scripps Institute of Oceanography, La Jolla, 1972.
  26. J. R. V. Zaneveld, D. M. Roach, and H. Pak, “The determination of the index of refraction distribution of oceanic particulates,” J. Geophys. Res. 79, 4091–4095 (1974). [CrossRef]
  27. R. Fletcher and M. J. D. Powell, “A rapidly convergent descent method for minimization,” Comput. J. 6, 163–168(1963).
  28. O. V. Kopelevich, “Low-parametric model of seawater optical properties,” in Ocean Optics I: Physical Ocean Optics, A.S.Monin, ed. (Nauka, 1983), pp. 208–234.
  29. C. D. Mobley, Light and Water: Radiative Transfer in Natural Waters (Academic, 1994).
  30. K. S. Shifrin, Physical Optics of Ocean Water, AIP Translation Series (American Institute of Physics, 1988).
  31. G. R. Fournier and J. L. Forand, “Analytical phase function for ocean water,” Proc. SPIE 2258, 194–201 (1994). [CrossRef]
  32. J. H. Chin, C. M. Sliepcevich, and M. Tribus, “Particle size distributions from angular variation of intensity of forward-scattered light at very small angles,” J. Phys. Chem. 59, 841–844 (1955). [CrossRef]
  33. S. D. Coston and N. George, “Particle sizing by inversion of the optical transform pattern,” Appl. Opt. 30, 4785–4794(1991). [CrossRef]
  34. J. C. Knight, D. Ball, and G. N. Robertson, “Analytical inversion for laser diffraction spectrometry giving improved resolution and accuracy in size distribution,” Appl. Opt. 30, 4795–4799 (1991). [CrossRef]
  35. J. B. Riley and Y. C. Agrawal, “Sampling and inversion of data in diffraction particle sizing,” Appl. Opt. 30, 4800–4817 (1991). [CrossRef]
  36. R. A. Reynolds, D. Stramski, V. M. Wright, and S. B. Woźniak, “Measurements and characterization of particle size distributions in coastal waters,” J. Geophys. Res. 115, C08024 (2010). [CrossRef]
  37. L. Karp-Boss, L. Azevedo, and E. Boss, “LISST-100 measurements of phytoplankton size distribution: evaluation of the effects of cell shape,” Limnol. Oceanogr. Methods 5, 396–406 (2007).
  38. B. G. Krishnappan, “In situ size distribution of suspended particles in the Fraser River,” J. Hydraul. Eng. 126, 561–569 (2000). [CrossRef]
  39. T. Serra, J. Colomer, X. P. Cristina, X. Vila, J. B. Arellano, and X. Casamitjana, “Evaluation of laser in situ scattering instrument for measuring concentration of phytoplankton, purple sulfur bacteria, and suspended inorganic sediments in lakes,” J. Environ. Eng. 127, 1023–1030 (2001). [CrossRef]
  40. Y. C. Agrawal and P. Traykovski, “Particles in the bottom boundary layer: concentration and size dynamics through events,” J. Geophys. Res. 106, 9533–9542 (2001). [CrossRef]
  41. J. W. Gartner, R. T. Cheng, P.-F. Wang, and K. Richter, “Laboratory and field evaluations of the LISST-100 instrument for suspended particle size determinations,” Mar. Geol. 175, 199–219 (2001). [CrossRef]
  42. J. H. Ahn and S. B. Grant, “Size distribution, sources, and seasonality of suspended particles in southern California marine bathing waters,” Environ. Sci. Technol. 41, 695–702 (2007). [CrossRef]
  43. R. W. Sheldon, A. Prakash, and W. H. Sutcliffe, “The size distribution of particles in the ocean,” Limnol. Oceanogr. 17, 327–340 (1972). [CrossRef]
  44. T. Platt and K. Denman, “Organisation in the pelagic ecosystem,” Helgoland Mar. Res. 30, 575–581 (1977).
  45. T. Fenchel, “Intrinsic rate of natural increase: the relationship with body size,” Oecologia 14, 317–326 (1974). [CrossRef]
  46. O. Ulloa, S. Sathyendranath, and T. Platt, “Effect of the particle-size distribution on the backscattering ratio in seawater,” Appl. Opt. 33, 7070–7077 (1994). [CrossRef]
  47. J. W. Campbell, “The lognormal distribution as a model for bio-optical variability in the sea,” J. Geophys. Res. 100, 13237–13254 (1995). [CrossRef]
  48. A. R. Longhurst, I. Koike, W. K. W. Li, J. Rodriguez, P. Dickie, P. Kepay, F. Partensky, B. Bautista, J. Ruiz, M. Wells, and D. F. Bird, “Sub-micron particles in northwest Atlantic shelf water,” Deep-Sea Res. A 39, 1–7 (1992). [CrossRef]
  49. R. D. Vaillancourt and W. M. Balch, “Size distribution of marine submicron particles determined by flow field-flow fractionation,” Limnol. Oceanogr. 45, 485–492 (2000). [CrossRef]
  50. M. L. Wells and E. D. Goldberg, “Marine submicron particles,” Mar. Chem. 40, 5–18 (1992). [CrossRef]
  51. A. Yamasaki, H. Fukuda, R. Fukuda, T. Miyajima, T. Nagata, H. Ogawa, and I. Koike, “Submicrometer particles in northwest Pacific coastal environments: abundance, size distribution, and biological origins,” Limnol. Oceanogr. 43, 536–542(1998). [CrossRef]
  52. C. E. Lambert, C. Jehanno, N. Silverberg, J. C. Brun-Cottan, and R. Chesselet, “Log-normal distribution of suspended particles in the open ocean,” J. Mar. Res. 39, 77–98 (1981).
  53. M. Jonasz, “Nonspherical sediment particles: comparison of size and volume distributions obtained with an optical and a resistive particle counter,” Mar. Geol. 78, 137–142 (1987). [CrossRef]
  54. B. Epstein, “The mathematical description of certain breakage mechanisms leading to the logarithmico-normal distribution,” J. Franklin Inst. 244, 471–477 (1947). [CrossRef]
  55. F. S. Lai, S. K. Friedlander, J. Pich, and G. M. Hidy, “The self-preserving particle size distribution for Brownian coagulation in the free-molecule regime,” J. Colloid Interface Sci. 39, 395–405 (1972). [CrossRef]
  56. J. W. Campbell and C. M. Yentsch, “Variance within homogeneous phytoplankton populations, I: theoretical framework for interpreting histograms,” Cytometry 10, 587–595 (1989). [CrossRef]
  57. J. W. Campbell and C. M. Yentsch, “Variance within homogeneous phytoplankton populations, II: Analysis of clonal cultures,” Cytometry 10, 596–604 (1989). [CrossRef]
  58. J. W. Campbell, C. M. Yentsch, and T. L. Cucci, “Variance within homogeneous phytoplankton populations, III: analysis of natural populations,” Cytometry 10, 605–611 (1989). [CrossRef]
  59. H. C. van de Hulst, Light Scattering by Small Particles(Dover, 1981).
  60. A. Morel and A. Bricaud, “Inherent optical properties of algal cells, including picoplankton. Theoretical and experimental results,” Can. Bull. Fish. Aquat. Sci. 214, 521–559 (1986).
  61. E. Aas, “Refractive index of phytoplankton derived from its metabolite composition,” J. Plankton Res. 18, 2223–2249(1996). [CrossRef]
  62. R. E. Green, H. M. Sosik, R. J. Olson, and M. D. DuRand, “Flow cytometric determination of size and complex refractive index for marine particles: comparison with independent and bulk estimates,” Appl. Opt. 42, 526–541 (2003). [CrossRef]
  63. W. R. Clavano, E. Boss, and L. Karp-Boss, “Inherent optical properties of non-spherical marine-like particles—from theory to observation,” in Oceanography and Marine Biology: An Annual Review (Taylor & Francis, 2007), Vol.  45, pp. 1–38.
  64. M. Jonasz, “Nonsphericity of suspended marine particles and its influence on light scattering,” Limnol. Oceanogr. 32, 1059–1065 (1987). [CrossRef]
  65. J. C. Kitchen and J. R. V. Zaneveld, “A three-layered sphere model of the optical properties of phytoplankton,” Limnol. Oceanogr. 37, 1680–1690 (1992). [CrossRef]
  66. X. Zhang, M. R. Lewis, and B. D. Johnson, “Influence of bubbles on scattering of light in the ocean,” Appl. Opt. 37, 6525–6536 (1998). [CrossRef]
  67. R. A. Meyer, “Light scattering from biological cells: dependence of backscattering radiation on membrane thickness and refractive index,” Appl. Opt. 18, 585–588 (1979). [CrossRef]
  68. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).
  69. D. Risovic, “Two-component model of sea particle size distribution,” Deep-Sea Res. I 40, 1459–1473 (1993). [CrossRef]
  70. O. Ulloa, S. Sathyendranath, T. Platt, and R. A. Quiñones, “Light scattering by marine heterotrophic bacteria,” J. Geophys. Res. 97, 9619–9629 (1992). [CrossRef]
  71. K. L. Carder, G. Beardsley, Jr., and H. Pak, “Particle size distribution in the Eastern Equatorial Pacific,” J. Geophys. Res. 76, 5070–5077 (1971). [CrossRef]
  72. M. I. Mishchenko and L. D. Travis, “Light scattering by polydispersions of randomly oriented spheroids with sizes comparable to wavelengths of observation,” Appl. Opt. 33, 7206–7225 (1994). [CrossRef]
  73. O. Schofield, T. Bergmann, P. Bissett, J. F. Grassle, D. B. Haidvogel, J. Kohut, M. Moline, and S. M. Glenn, “The Long-term Ecosystem Observatory: an integrated coastal observatory,” IEEE J. Oceanic Eng. 27, 146–154 (2002). [CrossRef]
  74. X. Zhang and L. Hu, “Estimating scattering of pure water from density fluctuation of the refractive index,” Opt. Express 17, 1671–1678 (2009). [CrossRef]
  75. X. Zhang, L. Hu, and M.-X. He, “Scattering by pure seawater: effect of salinity,” Opt. Express 17, 5698–5710 (2009). [CrossRef]
  76. O. Dubovik, “Optimization of numerical inversion in photopolarimetric remote sensing,” in Photopolarimetry in Remote Sensing, G.Videen, Y.Yatskiv, and M.Mishchenko, eds. (Kluwer, 2004), pp. 65–106.
  77. B. P. Curry, “Constrained eigenfunction method for the inversion of remote sensing data: application to particle size determination from light scattering measurements,” Appl. Opt. 28, 1345–1355 (1989). [CrossRef]
  78. M. M. Lozano, E. Talu, and M. L. Longo, “Dissolution of microbubbles generated in seawater obtained offshore: behavior and surface tension measurements,” J. Geophys. Res. 112, C12001 (2007). [CrossRef]
  79. M. L. Longo, Department of Chemical Engineering and Materials Science, University of California, Davis, Calif., USA (personal communication, 2010).
  80. C. L. Lawson and R. J. Hanson, Solving Least Squares Problems, Automatic Computation (Prentice-Hall, 1974).
  81. L. F. Portugal, J. J. Judice, and L. N. Vicente, “A comparison of block pivoting and interior-point algorithms for linear least squares problems with nonnegative variables,” Math. Comput. 63, 625–643 (1994). [CrossRef]
  82. L. Stemmann, D. Eloire, A. Sciandra, G. A. Jackson, L. Guidi, M. Picheral, and G. Gorsky, “Volume distribution for particles between 3.5 to 2000 μm in the upper 200 m region of the South Pacific Gyre,” Biogeosciences 5, 299–310 (2008). [CrossRef]
  83. B. D. Johnson, “Bubble populations: background and breaking waves,” in Oceanic Whitecaps and Their Role in Air-Sea Exchange Processes, E.C.Monahan and G.Mac Niocail, eds. (Reidel, 1986), pp. 69–73.
  84. O. Dubovik, A. Smirnov, B. N. Holben, M. D. King, Y. J. Kaufman, T. F. Eck, and I. Slutsker, “Accuracy assessments of aerosol optical properties retrieved from Aerosol Robotic Network (AERONET) Sun and sky radiance measurements,” J. Geophys. Res. 105, 9791–9806(2000). [CrossRef]
  85. M. Jonasz and G. R. Fournier, “Approximation of the size distribution of marine particles by a sum of log-normal functions,” Limnol. Oceanogr. 41, 744–754 (1996). [CrossRef]
  86. M. L. Wells and E. D. Goldberg, “Occurrence of small colloids in sea water,” Nature 353, 342–344 (1991). [CrossRef]
  87. K. E. Wommack and R. R. Colwell, “Virioplankton: viruses in aquatic ecosystems,” Microbiol. Mol. Biol. Rev. 64, 69–114(2000). [CrossRef]
  88. A. Morel and Y.-H. Ahn, “Optics of heterotrophic nanoflagellates and ciliates: a tentative assessment of their scattering role in oceanic waters compared to those of bacterial and algal cells,” J. Mar. Res. 49, 177–202 (1991). [CrossRef]
  89. D. Stramski, E. Boss, D. Bogucki, and K. J. Voss, “The role of seawater constituents in light backscattering in the ocean,” Prog. Oceanogr. 61, 27–56 (2004). [CrossRef]
  90. W. Arnott and P. L. Marston, “Unfolded optical glory of spheroids: backscattering of laser light from freely rising spheroidal air bubbles in water,” Appl. Opt. 30, 3429–3442(1991). [CrossRef]
  91. H. M. Nussenzveig, “Does the glory have a simple explanation?,” Opt. Lett. 27, 1379–1381 (2002). [CrossRef]
  92. M. I. Mishchenko, L. D. Travis, and A. A. Lacis, Scattering, Absorption, and Emission of Light by Small Particles(Cambridge University, 2002).
  93. C. F. Bohren and S. B. Singham, “Backscattering by nonspherical particles: a review of methods and suggested new approaches,” J. Geophys. Res. 96, 5269–5277 (1991). [CrossRef]
  94. M. Twardowski, X. Zhang, S. Freeman, M. Slivkoff, J. Sullivan, H. Czerski, S. Vagle, Y. You, and G. Kattawar, “Inverting the volume scattering function to infer particle composition at the near-surface,” in Proceedings of Ocean Optics XX (2011).
  95. L. Bi, P. Yang, G. W. Kattawar, and R. Kahn, “Modeling optical properties of mineral aerosol particles by using nonsymmetric hexahedra,” Appl. Opt. 49, 334–342 (2010). [CrossRef]
  96. H. Czerski, M. Twardowski, S. Vagle, and M. Slivkoff, “Resolving bubble size distributions and dynamics in near-surface waters with optics and acoustics,” in Proceedings of Ocean Optics XX (2011).
  97. M. Jonasz and G. R. Fournier, Light Scattering by Particles in Water: Theoretical and Experimental Foundations(Academic, 2007).
  98. R. D. Vaillancourt, C. W. Brown, R. R. L. Guillard, and W. M. Balch, “Light backscattering properties of marine phytoplankton: relationships to cell size, chemical composition and taxonomy,” J. Plankton Res. 26, 191–212(2004). [CrossRef]
  99. H. Volten, J. F. de Haan, J. W. Hovenier, R. Schreurs, W. Vassen, and A. G. Decker, “Laboratory measurements of angular distributions of light scattered by phytoplankton and silt,” Limnol. Oceanogr. 43, 1180–1197 (1998). [CrossRef]
  100. A. L. Whitmire, W. S. Pegau, L. Karp-Boss, E. Boss, and T. J. Cowles, “Spectral backscattering properties of marine phytoplankton cultures,” Opt. Express 18, 15073–15093(2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited