OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 50, Iss. 9 — Mar. 20, 2011
  • pp: 1266–1271

Absorbing boundary conditions for low group velocity electromagnetic waves in photonic crystals

Murtaza Askari, Babak Momeni, Charles M. Reinke, and Ali Adibi  »View Author Affiliations

Applied Optics, Vol. 50, Issue 9, pp. 1266-1271 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (646 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present an efficient method for the absorption of slow group velocity electromagnetic waves in photonic crystal waveguides (PCWs). We show that adiabatically matching the low group velocity waves to high group velocity waves of the PCW and extending the PCW structure into the perfectly matched layer (PML) region results in a 15 dB reduction of spurious reflections from the PML. We also discuss the applicability of this method to structures other than PCWs.

© 2011 Optical Society of America

OCIS Codes
(050.1755) Diffraction and gratings : Computational electromagnetic methods
(130.5296) Integrated optics : Photonic crystal waveguides

ToC Category:
Integrated Optics

Original Manuscript: July 29, 2010
Revised Manuscript: January 6, 2011
Manuscript Accepted: January 23, 2011
Published: March 18, 2011

Murtaza Askari, Babak Momeni, Charles M. Reinke, and Ali Adibi, "Absorbing boundary conditions for low group velocity electromagnetic waves in photonic crystals," Appl. Opt. 50, 1266-1271 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. E. Yablonovitch, “Inhibited spontaneous emission in solid state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062(1987). [CrossRef] [PubMed]
  2. S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486–2489(1987). [CrossRef] [PubMed]
  3. J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton University, 1995).
  4. E. Ozbay, B. Temelkuran, M. Bayindir, R. Biswas, M. M. Siqalas, G. Tuttle, and K. M. Ho, “Highly directional resonant antennas built around photonic crystals,” in 1999 IEEE LEOS Annual Meeting Conference Proceedings (IEEE, 1999), pp. 8–11.
  5. H. Caglayan, I. Bulu, and E. Ozbay, “Off-axis beaming from subwavelength aperture,” J. Appl. Phys. 104, 073108 (2008). [CrossRef]
  6. A. F. Matthews, “Experimental demonstration of self-collimation beaming and splitting in photonic crystals at microwave frequencies,” Opt. Commun. 282, 1789–1792 (2009). [CrossRef]
  7. B. Momeni, J. Huang, M. Soltani, M. Askari, S. Mohammadi, M. Rakhshandehroo, and A. Adibi, “Compact wavelength demultiplexing using focusing negative index photonic crystal superprisms,” Opt. Express 14, 2413–2422 (2006). [CrossRef] [PubMed]
  8. M. Askari and A. Adibi, “Wide bandwidth photonic crystal waveguide bends,” Proc. SPIE 7609, 760918 (2010). [CrossRef]
  9. M. Askari, B. Momeni, S. Yegnanarayanan, A. Eftekhar, and A. Adibi, “Efficient coupling of light into the planar photonic crystal waveguides in the slow group velocity regime,” Proc. SPIE 6901, 69011A (2008). [CrossRef]
  10. M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohoma, “Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phy. Rev. Lett. 87, 253902 (2001). [CrossRef]
  11. M. Askari, B. Momeni, M. Soltani, and A. Adibi, “Systematic design of wide bandwidth photonic crystal waveguide bends with high transmission and low dispersion,” J. Lightwave Technol. 28, 1707–1713 (2010). [CrossRef]
  12. S. Assefa, S. J. McNab, and Y. A. Vlasov, “Transmission of slow light through photonic crystal waveguide bends,” Opt. Lett. 31, 745–747 (2006). [CrossRef] [PubMed]
  13. Y. Hamachi, S. Kubo, and T. Baba, “Slow light with low dispersion and nonlinear enhancement in a lattice-shifted photonic crystal waveguide,” Opt. Lett. 34, 1072–1074 (2009). [CrossRef] [PubMed]
  14. N. Skivesen, A. Tetu, M. Kristensen, J. Kjems, L. H. Frandsen, and P. I. Borel, “Photonic-crystal waveguide biosensor,” Opt. Express 15, 3169–3176 (2007). [CrossRef] [PubMed]
  15. K. S. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media,” IEEE Antennas Propag Mag. 14, 302–307 (1966). [CrossRef]
  16. J. P. Berenger, “A perfectly matched layer for the absorption of electromagnetic waves,” J. Comput. Phys. 114, 185–200 (1994). [CrossRef]
  17. A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “High transmission through sharp bends in photonic crystal waveguides,” Phys. Rev. Lett. 77, 3787–3790 (1996). [CrossRef] [PubMed]
  18. A. Mekis, S. Fan, and J. D. Joannopoulos, “Absorbing boundary conditions for FDTD simulations of photonic crystal waveguides,” IEEE Microw. Guided Wave Lett. 9, 502–504 (1999). [CrossRef]
  19. M. Koshiba, Y. Tsuji, and S. Sasaki, “High-performance absorbing boundary conditions for photonic crystal waveguide simulations,” IEEE Microw. Wirel. Compon. Lett. 11, 152–154 (2001). [CrossRef]
  20. R. Pollock, Fundamentals of Optoelectronics (Irwin, 1995).
  21. D. E. Merewether, R. Fisher, and F. W. Smith, “On implementing a numeric Huygen’s source scheme in a finite difference program to illuminate scattering bodies,” IEEE Trans. Nucl. Sci. 27, 1829–1833 (1980). [CrossRef]
  22. A. Taflove, Computational Electromagnetics: The Finite-Difference Time-Domain Method (Artech, 1995).
  23. Y-C. Hsue and T.-J. Yang, “Applying a modified plane-wave expansion method to the calculations of transmittivity and reflectivity of a semi-infinite photonic crystal,” Phys. Rev. E 70, 016706 (2004). [CrossRef]
  24. B. Momeni and A. Adibi, “Adiabatic matching stage for coupling of light to extended Bloch modes of photonic crystals,” Appl. Phys. Lett. 87, 171104–13 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited