OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 50, Iss. 9 — Mar. 20, 2011
  • pp: 1272–1279

Heterodyne grating interferometer based on a quasi-common-optical-path configuration for a two-degrees-of-freedom straightness measurement

Ju-Yi Lee, Hung-Lin Hsieh, Gilles Lerondel, Regis Deturche, Mini-Pei Lu, and Jyh-Chen Chen  »View Author Affiliations

Applied Optics, Vol. 50, Issue 9, pp. 1272-1279 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (880 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present a heterodyne grating interferometer based on a quasi-common-optical-path (QCOP) design for a two-degrees-of-freedom (DOF) straightness measurement. Two half-wave plates are utilized to rotate the polarizations of two orthogonally polarized beams. The grating movement can be calculated by measuring the phase difference variation in each axis. The experimental results demonstrate that our method has the ability to measure two-DOF straightness and still maintain high system stability. The proposed and demonstrated method, which relies on heterodyne interferometric phase measurement combined with the QCOP configuration, has the advantages of high measurement resolution, relatively straightforward operation, and high system stability.

© 2011 Optical Society of America

OCIS Codes
(120.0120) Instrumentation, measurement, and metrology : Instrumentation, measurement, and metrology
(120.3180) Instrumentation, measurement, and metrology : Interferometry

ToC Category:
Instrumentation, Measurement, and Metrology

Original Manuscript: September 30, 2010
Revised Manuscript: January 14, 2011
Manuscript Accepted: January 23, 2011
Published: March 18, 2011

Ju-Yi Lee, Hung-Lin Hsieh, Gilles Lerondel, Regis Deturche, Mini-Pei Lu, and Jyh-Chen Chen, "Heterodyne grating interferometer based on a quasi-common-optical-path configuration for a two-degrees-of-freedom straightness measurement," Appl. Opt. 50, 1272-1279 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. Holmes, R. Hocken, and D. Trumper, “The long-range scanning stage: a novel platform for scanned-probe microscopy,” Precis. Eng. 24, 191–209 (2000). [CrossRef]
  2. B. E. Maile, W. Henschel, H. Kurz, B. Rienks, R. Polman, and P. Kaars, “Sub-10 nm linewidth and overlay performance achieved with a fine-tuned EBPG-5000 TFE electron beam lithography system,” Jpn. J. Appl. Phys. 39, 6836–6842 (2000). [CrossRef]
  3. S. S. Aphale, S. Devasia, and S. O. R. Moheimani, “High-bandwidth control of a piezoelectric nanopositioning stage in the presence of plant uncertainties,” Nanotechnology 19, 125503 (2008). [CrossRef] [PubMed]
  4. S. Yoo and S. W. Kim, “Self-calibration algorithm for testing out-of-plane errors of two-dimensional profiling stages,” Int. J. Mach. Tools Manuf. 44, 767–774 (2004). [CrossRef]
  5. F. Felten, G. A. Schneider, J. Muñoz Saldaña, and S. V. Kalinin, “Modeling and measurement of surface displacements in BaTiO3 bulk material in piezoresponse force microscopy,” J. Appl. Phys. 96, 563–568 (2004). [CrossRef]
  6. Hewlett-Packard, “5526A laser measurement systems user’s guide,” http://www.home.agilent.com/agilent/product.jspx?cc=US&lc=eng&nid=-536900389.536898115&pageMode=PL.
  7. C. K. Lee, G. Y. Wu, C. T. Teng, W. J. Wu, C. T. Lin, W. H. Hsiao, H. C. Shih, J. S. Wang, S. C. Lin, C. C. Lin, C. F. Lee, and Y. C. Lin, “A high performance Doppler interferometer for advanced optical storage systems,” Jpn. J. Appl. Phys. 38, 1730–1741(1999). [CrossRef]
  8. G. Langfelder, A. Longoni, and F. Zaraga, “Low-noise real-time measurement of the position of movable structures in MEMS,” Sens. Actuators A Phys. 148, 401–406 (2008). [CrossRef]
  9. S.-K. Kuo, C.-C. Hung, C.-C. Lin, and W.-H. Yang, “Development of a nano-displacement measurement system,” Meas. Sci. Technol. 40, 256–263 (2007). [CrossRef]
  10. F. Restagno, J. Crassous, E. Charlaix, and M. Monchanin, “A new capacitive sensor for displacement measurement in a surface-force apparatus,” Meas. Sci. Technol. 12, 16–22 (2001). [CrossRef]
  11. K. C. Fan, C. L. Chu, J. L. Liao, and J. I. Mou, “Development a high-precision straightness measuring system with DVD pick-up head,” Meas. Sci. Technol. 14, 47–54 (2003). [CrossRef]
  12. A. Sinno, P. Ruaux, L. Chassagne, S. Topcu, Y. Alayli, G. Lerondel, S. Blaize, A. Bruvant, and P. Rover, “Enlarged atomic force microscopy scanning scope: novel sample-holder device millimeter range,” Rev. Sci. Instrum. 78, 095107 (2007). [CrossRef] [PubMed]
  13. L. Chassagne, M. Wakim, S. Topcu, P. Ruaux, P. Juncar, and Y. Alavli, “A 2D nano-positioning system with sub-nanometric repeatability over the millimeter displacement range,” Meas. Sci. Technol. 18, 3267–3272 (2007). [CrossRef]
  14. J. H. Zhang and L. L. Cai, “Interferometric straightness measurement system using triangular prisms,” Opt. Eng. 37, 1785–1789 (1998). [CrossRef]
  15. J. Y. Lee, H. Y. Chen, C. C. Hsu, and C. C. Wu, “Optical heterodyne grating interferometry for displacement measurement with subnanometric resolution,” Sens. Actuators A Phys. 137, 185–191 (2007). [CrossRef]
  16. C. M. Wu, “Heterodyne interferometer system with subnanometer accuracy for measurement of straightness,” Appl. Opt. 43, 3812–3816 (2004). [CrossRef] [PubMed]
  17. Q. Chen, D. Lin, J. Wu, J. Yan, and C. Yin, “Straightness/coaxiality measurement system with transverse Zeeman dual-frequency laser,” Meas. Sci. Technol. 16, 2030–2037(2005). [CrossRef]
  18. H. L. Hsieh, J. Y. Lee, W. T. Wu, J. C. Chen, R. Deturche, and G. Lerondel, “Quasi-common-optical-path heterodyne grating interferometer for displacement measurement,” Meas. Sci. Technol. 21, 115304 (2010). [CrossRef]
  19. D. C. Su, M. H. Chiu, and C. D. Chen, “Simple two-frequency laser,” Precis. Eng. 18, 161–163 (1996). [CrossRef]
  20. S. J. Friedman, B. Barwick, and H. Batelaan, “Focused-laser interferometric position sensor,” Rev. Sci. Instrum. 76, 123106 (2005). [CrossRef]
  21. K. Matsuda, M. Roy, T. Eiju, J. W. O’Byrne, and C. J. R. Sheppard, “Straightness measurements with a reflection confocal optical system—an experimental study,” Appl. Opt. 41, 3966–3970 (2002). [CrossRef] [PubMed]
  22. C. M. Wu, “Periodic nonlinearity resulting from ghost reflection in heterodyne interferometry,” Opt. Commun. 215, 17–23 (2003). [CrossRef]
  23. S. J. A. G. Cosijns, H. Haitjema, and P. H. J. Schellekens, “Modeling and verifying non-linearities in heterodyne displacement interferometry,” Precis. Eng. 26, 448–455(2002). [CrossRef]
  24. S. Y. Lee, J. F. Lin, and Y. L. Lo, “Measurements of phase retardation and principal axis angle using an electro-optic modulated Mach–Zehnder interferometer,” Opt. Lasers Eng. 43, 704–720 (2005). [CrossRef]
  25. N. Bobroff, “Recent advances in displacement measuring interferometry,” Meas. Sci. Technol. 4, 907–926 (1993). [CrossRef]
  26. N. George and J. W. Matthews, “Holographic diffraction grating,” Appl. Phys. Lett. 9, 212–215 (1966). [CrossRef]
  27. G. Lerondel, A. Sinno, L. Chassagne, S. Blaize, P. Ruaux, A. Bruvant, S. Topcu, P. Rover, and Y. Alayli, “Enlarged near field optical imaging,” J. Appl. Phys. 106, 044913 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited